WEBVTT

- 1.00:00:00.000 --> 00:00:02.613 < v Robert>Hi, I'm a Professor McDougal, </v>
- $2\ 00:00:06.358 \longrightarrow 00:00:07.990$ and Professor Wayne is also in the back.
- 3 00:00:07.990 --> 00:00:11.060 If you haven't signed in, please make sure that you pass
- $4\ 00:00:11.060 -> 00:00:13.310$ this, get a chance to sign the sign in sheet.
- 5.00:00:14.590 --> 00:00:19.260 So today we are very, very privileged to be joined
- $6\ 00:00:19.260 \longrightarrow 00:00:20.810$ by Professor Naim Rashid
- 7 00:00:22.030 --> 00:00:25.360 from the University of North Carolina Chapel Hill,
- 8 00:00:25.360 --> 00:00:29.890 Professor Rashid got his bachelor's in biology from Duke,
- 9 00:00:29.890 --> 00:00:34.890 and his PhD in biostatistics from UNC Chapel Hill.
- $10\ 00:00:34.930 \dashrightarrow 00:00:39.930$ He's the author of 34 publications, and he holds a patent
- $11\ 00:00:39.960 \longrightarrow 00:00:44.410$ on methods in composition for prognostic
- $12\ 00{:}00{:}44.410 \dashrightarrow 00{:}00{:}47.313$ and/or diagnostic supply chain of pancreatic cancer.
- $13\ 00:00:48.170 --> 00:00:50.640$ He's currently an associate professor at UNC Chapel Hill's
- $14\ 00:00:50.640$ --> 00:00:53.710 department of biostatistics, and he's also affiliated
- $15\ 00:00:53.710 \longrightarrow 00:00:56.903$ with their comprehensive cancer center there.
- 16~00:00:59.100 --> 00:01:04.100 With that, Professor Rashid, would you like to take it away?
- $17\ 00:01:04.440 \longrightarrow 00:01:05.920 < v \longrightarrow Sure. </v>$
- $18\ 00:01:05.920 \longrightarrow 00:01:08.470$ It looks like it says host disabled screen sharing.
- 19 00:01:10.344 --> 00:01:12.301 (chuckling)
- $20\ 00:01:12.301 \longrightarrow 00:01:13.760 < v \text{ Robert} > \text{All right, give me one second.} < /v > 10:01:12.301 < v \text{ Robert} > \text{All right, give me one second.} < /v > 10:01:12.301 < v \text{ Robert} > \text{All right, give me one second.} < /v > 10:01:12.301 < v \text{ Robert} > \text{All right, give me one second.} < /v > 10:01:12.301 < v \text{ Robert} > \text{All right, give me one second.} < /v > 10:01:12.301 < v \text{ Robert} > \text{All right, give me one second.} < /v > 10:01:12.301 < v \text{ Robert} > \text{All right, give me one second.} < /v > 10:01:12.301 < v \text{ Robert} > \text{All right, give me one second.} < /v > 10:01:12.301 < v \text{ Robert} > \text{All right, give me one second.} < /v > 10:01:12.301 < v \text{ Robert} > \text{All right, give me one second.} < /v > 10:01:12.301 < v \text{ Robert} > \text{All right, give me one second.} < /v > 10:01:12.301 < v \text{ Robert} > \text{All right, give me one second.}$
- 21 00:01:13.760 --> 00:01:14.823 Thank you.
- 22 00:01:16.760 --> 00:01:17.883 I'm trying to do.
- 23 00:01:26.781 --> 00:01:29.198 (indistinct)

- $24\ 00:01:33.645 --> 00:01:35.901$ Okay, you should be, you should be able to come on now.
- 25 00:01:35.901 --> 00:01:36.984 <v -> All right. </v>
- 26 00:01:38.584 --> 00:01:39.873 Can you guys see my screen?
- 27 00:01:43.650 --> 00:01:44.483 All right.
- 28 00:01:47.537 --> 00:01:48.637 Can you guys see this?
- 29 00:01:49.840 --> 00:01:50.913 <v Robert>There we go.</v>
- $30\ 00:01:52.062 \longrightarrow 00:01:52.895$ Perfect. Thank you.
- 31 00:01:52.895 --> 00:01:53.850 <v ->Okay, great.</v>
- $32\ 00{:}01{:}53.850 \dashrightarrow 00{:}01{:}56.501$ So yes, thanks to the department for inviting me to speak
- $33\ 00:01:56.501 --> 00:02:00.483$ today, and also thanks to Robert and Wayne for organizing.
- $34\,00:02:01.460 \, --> 00:02:04.420$ And today I'll be talking about issues regarding
- $35\ 00:02:04.420 \longrightarrow 00:02:07.500$ replicability in terms of clinical prediction models,
- $36\ 00:02:07.500 --> 00:02:11.830$ specifically in the context of genomic prediction models,
- $37\ 00:02:11.830 \longrightarrow 00:02:13.423$ derived from clinical trials.
- $38\ 00:02:16.080 --> 00:02:17.870$ So as an overview, we'll be talking first a little bit
- $39\ 00:02:17.870 \longrightarrow 00:02:20.670$ about the problems of replicability in general,
- $40\ 00{:}02{:}20.670 \dashrightarrow 00{:}02{:}24.300$ in scientific research, and also about specific issues
- 41 $00:02:24.300 \longrightarrow 00:02:28.040$ in genomics itself, and then I'll be moving on to talking
- $42\ 00:02:28.040 --> 00:02:31.070$ about a method that we've proposed to assist
- $43\ 00{:}02{:}31.070 \dashrightarrow 00{:}02{:}34.380$ with issues regarding data integration, and learning
- $44\ 00:02:34.380 \longrightarrow 00:02:37.680$ in this environment when you have a heterogeneous data sets.
- 45 00:02:37.680 --> 00:02:39.860 I'll talk a little bit about a case study
- $46\ 00:02:39.860 \longrightarrow 00:02:42.901$ where we apply these practices to subtyping
- $47\ 00:02:42.901 \longrightarrow 00:02:44.670$ pancreatic cancer, touch on some current work

- $48\ 00:02:44.670 \longrightarrow 00:02:46.581$ that we're doing, and then end
- $49\ 00:02:46.581 \longrightarrow 00:02:47.890$ with some concluding thoughts.
- 50 00:02:47.890 --> 00:02:49.861 And feel free to interrupt, you know,
- $51\ 00:02:49.861 \longrightarrow 00:02:52.211$ as the talk is long, if you have any questions.
- $52~00{:}02{:}53.540 {\: -->\:} 00{:}02{:}55.650$ So I'm now an associate professor in the department
- $53\ 00:02:55.650 \longrightarrow 00:02:57.017$ of biostatistics at UNC.
- 54 00:02:58.160 --> 00:03:00.430 My work generally involves problems
- $55~00:03:00.430 \dashrightarrow 00:03:04.730$ surrounding cancer and genomics, and more recently
- 56 00:03:04.730 --> 00:03:07.390 we've been doing work regarding epigenomics.
- $57\ 00:03:07.390 \dashrightarrow 00:03:09.370$ We just recently published a supply-connected package called
- 58~00:03:09.370 --> 00:03:13.120 Epigram for a consistence of differential key calling,
- 59~00:03:13.120 --> 00:03:15.480 and we've also done some work in model-based clustering.
- 60 00:03:15.480 --> 00:03:18.310 We published a package called, FSCSeq,
- 61 00:03:18.310 --> 00:03:21.780 which helps you derive and discover clusters
- 62 00:03:21.780 --> 00:03:23.830 from RNA seq data, while also determining
- $63\ 00:03:24.717 \longrightarrow 00:03:25.550$ clusters in specific genes.
- $64~00{:}03{:}25.550 \dashrightarrow 00{:}03{:}27.980$ And today we'll be talking more about the topic
- 65 00:03:27.980 --> 00:03:30.340 of multi-study replicability, which is the topic
- $66\ 00:03:30.340 \longrightarrow 00:03:33.710$ of a paper that we published a year or two ago,
- $67\ 00{:}03{:}33.710 \dashrightarrow 00{:}03{:}36.570$ and in our package that we've developed more recently,
- $68\ 00:03:36.570 --> 00:03:38.463$ implementing some of the methods.
- $69~00:03:40.090 \dashrightarrow 00:03:42.660$ So before I get deeper into the talk, one of the things
- $70~00:03:42.660 \longrightarrow 00:03:45.130$ I wanted to establish is this definition
- $71\ 00:03:45.130 \longrightarrow 00:03:47.090$ of what we mean by replicability.
- $72~00:03:47.090 \longrightarrow 00:03:49.670$ You might've heard the term reproducibility as well,

- $73~00:03:49.670 \longrightarrow 00:03:52.430$ and to make the distinction between the two terms,
- 74 00:03:52.430 --> 00:03:54.140 I'd like to define reproducibility in a way
- 75 00:03:54.140 --> 00:03:56.910 that Jeff Leak has defined in the past,
- $76\ 00:03:56.910 \longrightarrow 00:03:59.410$ where reproducibility is the ability to take
- $77\ 00:03:59.410 \longrightarrow 00:04:02.540$ coding data from a publication, and to rerun the code,
- $78\ 00:04:02.540 \longrightarrow 00:04:05.630$ and get the same results as the original publication.
- $79\ 00:04:05.630 \longrightarrow 00:04:08.650$ Where replicability, we're defining as the ability to be run
- $80\ 00:04:08.650$ --> 00:04:10.980 an experiment generating new data, and get results
- $81\ 00:04:10.980 --> 00:04:12.780$ that are quote, unquote "consistent"
- $82\ 00:04:14.088 --> 00:04:15.560$ with that of the original study.
- $83\ 00:04:15.560 --> 00:04:18.720$ So in this sort of context, when it comes to replicability,
- $84\ 00:04:18.720$ --> 00:04:21.890 you might've heard about publications that have come out
- $85\ 00:04:21.890 --> 00:04:23.773$ in the past that talk about how there are issues
- $86~00{:}04{:}23.773 \dashrightarrow 00{:}04{:}27.600$ regarding replicating the research that's been published
- $87\ 00:04:27.600 \longrightarrow 00:04:29.570$ in the scientific literature.
- $88\ 00:04:29.570$ --> 00:04:32.280 This one paper in PLOS Medicine was published
- $89\ 00:04:32.280 \longrightarrow 00:04:36.150$ by, and that is in 2005, and there's been a number
- 90 00:04:36.150 --> 00:04:37.920 of publications that have come out since,
- 91 00:04:37.920 --> 00:04:40.880 talking about problems regarding replicability,
- $92\ 00:04:40.880 \longrightarrow 00:04:43.290$ and ways that we could potentially address it.
- 93 00:04:43.290 --> 00:04:45.820 And the problem has become large enough where it has
- $94\ 00:04:45.820$ --> 00:04:48.840 its own Wikipedia entry talking about the crisis,
- $95\ 00:04:48.840 --> 00:04:51.300$ and has a long list of examples that talks

- $96\ 00:04:51.300 \longrightarrow 00:04:54.170$ about issues regarding replicating results
- $97\ 00:04:54.170 \longrightarrow 00:04:55.400$ from the scientific studies.
- 98 00:04:55.400 --> 00:04:57.550 So this is something that has been a known issue
- 99 00:04:57.550 --> 00:05:00.320 for a while, and these problems also extend
- $100\ 00:05:00.320 \longrightarrow 00:05:03.270$ to situations where you want to, for example,
- $101\ 00:05:03.270 \longrightarrow 00:05:06.300$ develop clinical prediction models in genomics.
- $102\ 00:05:06.300 \longrightarrow 00:05:10.280$ So to give an example of this, let's say that we wanted to,
- $103\ 00:05:10.280 \longrightarrow 00:05:13.200$ in the population of metastatic breast cancer patients,
- $104\ 00:05:13.200 --> 00:05:15.710$ we wanted to develop a model that predicts
- 105 00:05:15.710 --> 00:05:18.170 some clinical outcome Y, given a set
- $106\ 00:05:18.170 \longrightarrow 00:05:20.530$ of gene expression values X.
- $107\ 00:05:20.530 \longrightarrow 00:05:23.020$ And so the purpose of this sort of exercise is
- 108 00:05:23.020 --> 00:05:26.120 to hopefully translate this sort of model
- $109\ 00{:}05{:}26.120$ --> $00{:}05{:}27.930$ that we've developed, and apply it to the clinic,
- $110\ 00:05:27.930 \longrightarrow 00:05:31.030$ where we can use it for clinical decision-making.
- $111\ 00:05:31.030 --> 00:05:34.653$ Now, if we have data from one particular trial
- $112\ 00:05:34.653 \longrightarrow 00:05:36.960$ that pertains to this patient population,
- $113\ 00:05:36.960 \longrightarrow 00:05:39.020$ and the same clinical outcome being measured,
- $114\ 00:05:39.020 \longrightarrow 00:05:40.640$ in addition to having gene expression data,
- $115\ 00:05:40.640 \longrightarrow 00:05:42.640$ let's say that we derived a model, let's say
- $116\ 00:05:42.640 \longrightarrow 00:05:44.470$ that we're modeling some sort of binary outcome.
- $117\ 00:05:44.470 \longrightarrow 00:05:45.800$ let's say tumor response.
- 118 00:05:45.800 --> 00:05:48.190 And in this model, we used a cost report,
- $119\ 00:05:48.190 \longrightarrow 00:05:51.110$ or penalized logistic regression model
- $120\ 00:05:51.110 \longrightarrow 00:05:54.060$ that we fit to the data to try and predict the outcome,
- $121\ 00:05:54.060 \longrightarrow 00:05:55.940$ given the gene expression values.

- 122 00:05:55.940 --> 00:05:58.770 And here we obtained, let's say, 12 genes
- $123\ 00{:}05{:}58.770 \dashrightarrow 00{:}06{:}03.640$ after the fitting process, and the internal model 1 UNC
- $124\ 00:06:03.640 \longrightarrow 00:06:05.733$ on the sort of training subjects is 0.9.
- $125\ 00{:}06{:}06{.}740 \dashrightarrow 00{:}06{:}08{.}500$ But then let's say there's another group at Duke
- 126 00:06:08.500 --> 00:06:10.870 that's using data from their clinical trial,
- $127\ 00:06:10.870 \longrightarrow 00:06:13.197$ and they have a larger sample size.
- 128 00:06:13.197 --> 00:06:15.870 They also found more genes, 65 genes,
- $129\ 00:06:15.870 \longrightarrow 00:06:18.211$ but have a slightly lower training at UNC.
- $130\ 00{:}06{:}18.211 \dashrightarrow 00{:}06{:}21.910$ However, we really need to use external validation
- $131\ 00{:}06{:}21.910 \dashrightarrow 00{:}06{:}25.150$ to sort of get an independent assessment of how well
- $132\ 00:06:25.150 \longrightarrow 00:06:27.340$ each one of these alternative models are doing.
- $133\ 00:06:27.340 \longrightarrow 00:06:29.807$ So let's say we have data from a similar study from Harvard,
- $134\ 00:06:29.807 \longrightarrow 00:06:31.740$ and we applied both these train models
- $135\ 00{:}06{:}32.615 \dashrightarrow 00{:}06{:}35.260$ to the genomic data from that study at Harvard.
- $136\ 00:06:35.260 \longrightarrow 00:06:37.790$ We have the outcome information for those patients as well,
- $137\ 00{:}06{:}37.790 \dashrightarrow 00{:}06{:}42.153$ so we can calculate how well the model predicts
- $138\ 00:06:42.153 \longrightarrow 00:06:44.487$ on those validation subjects.
- $139\ 00:06:44.487 \longrightarrow 00:06:46.240$ And we find here in this data set,
- $140\ 00:06:46.240 \longrightarrow 00:06:48.740\ \text{model}\ 2\ \text{seems}$ to be doing better than model 1,
- $141\ 00{:}06{:}48.740 \dashrightarrow 00{:}06{:}50.870$ but if you try this again with another data set
- $142\ 00:06:50.870 \longrightarrow 00:06:53.470$ from Michigan, you might find that model 1 is doing
- $143\ 00:06:53.470 \longrightarrow 00:06:54.730$ better, better than model 2.
- $144\ 00{:}06{:}54.730 {\: -->\:} 00{:}06{:}57.640$ So the problem here is where we have researchers

- 145 00:06:57.640 --> 00:06:58.960 that are pointing fingers at each other,
- 146~00:06:58.960 --> 00:07:01.470 and it's really hard to know, "Well, who's who's right?"
- $147\ 00:07:01.470 \longrightarrow 00:07:03.580$ And why is this even happening in the first place,
- $148\ 00:07:03.580 \longrightarrow 00:07:05.938$ in terms of why do we get different genes, numbers of genes,
- $149\ 00:07:05.938$ --> 00:07:08.797 and each of the models derived from study 1 and study 2?
- 150 00:07:08.797 --> 00:07:11.770 And why are we seeing very low performance
- $151\ 00:07:11.770 \longrightarrow 00:07:13.620$ in some of these validation datasets?
- $152\ 00:07:15.290 \longrightarrow 00:07:17.330$ So here's an example from 2014,
- $153\ 00:07:17.330 \longrightarrow 00:07:19.600$ in the context of ovarian cancer.
- 154 00:07:19.600 --> 00:07:22.410 The authors basically collected 10 studies,
- $155\ 00:07:22.410 \longrightarrow 00:07:24.063$ all were microarray studies.
- $156\ 00:07:24.920 \longrightarrow 00:07:27.200$ The goal here was to predict overall survival
- 157 00:07:27.200 --> 00:07:29.550 in this population of ovarian cancer patients,
- $158~00:07:29.550 \longrightarrow 00:07:31.870$ given gene expression measurements
- 159 00:07:31.870 --> 00:07:33.800 from this microarray platform.
- $160\ 00:07:33.800 \longrightarrow 00:07:34.633$ So through a series
- $161\ 00{:}07{:}34.633 {\:{\mbox{--}}\!>\:} 00{:}07{:}38.640$ of really complicated cross-fertilization approaches,
- $162\ 00:07:38.640 \longrightarrow 00:07:40.430$ the data was normalized, and harmonized
- $163\ 00{:}07{:}40.430 \dashrightarrow 00{:}07{:}43.413$ across the studies, using a combination of ComBat
- $164\ 00:07:43.413 \longrightarrow 00:07:45.639$ and frozen RNA, and then they took
- $165\ 00:07:45.639 --> 00:07:47.640\ 14$ published prediction models in the literature,
- $166\ 00:07:47.640 \longrightarrow 00:07:50.970$ and they applied each of those models to each
- $167\ 00:07:50.970 \longrightarrow 00:07:53.255$ of the subjects from these 10 studies, and they compared
- $168\ 00:07:53.255 \longrightarrow 00:07:57.590$ the model predictions across each subject.
- 169 00:07:57.590 --> 00:08:00.490 So each column here in this matrix is a patient,

- 170 00:08:00.490 --> 00:08:03.060 and each row is a different prediction model,
- $171\ 00{:}08{:}03.060 \dashrightarrow 00{:}08{:}06.260$ and each cell represents the prediction
- $172\ 00:08:06.260 \longrightarrow 00:08:08.090$ from that model on that patient.
- $173\ 00:08:08.090 \longrightarrow 00:08:11.700$ So an ideal scenario, where we have the models generalizing
- $174\ 00:08:11.700 \longrightarrow 00:08:14.480$ and replicating across each of these individuals,
- $175\ 00:08:14.480 \longrightarrow 00:08:15.860$ we would expect to see the column,
- $176\ 00:08:15.860 --> 00:08:18.919$ each column here to have the same color value,
- $177\ 00{:}08{:}18.919 \dashrightarrow 00{:}08{:}20.080$ meaning that the predictions are consistent.
- $178\ 00{:}08{:}20{.}080 \dashrightarrow 00{:}08{:}22{.}220$ But clearly we see here that the predictions are
- 179 00:08:22.220 --> 00:08:24.310 actually very inconsistent,
- $180\ 00:08:24.310 \longrightarrow 00:08:26.060$ and very different from each other.
- $181\ 00:08:27.230 \longrightarrow 00:08:28.220$ In addition, if you look
- 182 00:08:28.220 --> 00:08:30.410 at the individual risk prediction models
- $183\ 00:08:30.410 \longrightarrow 00:08:31.990$ that the authors used, there was also
- $184\ 00:08:31.990 --> 00:08:33.770$ substantial differences in the genes
- $185\ 00:08:33.770 \longrightarrow 00:08:36.210$ that were selected in each of these models.
- $186~00:08:36.210 \dashrightarrow 00:08:39.760$ So there's a max 2% overlap in terms of common genes
- $187\ 00:08:39.760 \longrightarrow 00:08:41.350$ between each of these approaches.
- $188\ 00:08:41.350 --> 00:08:43.150$ And one thing to mention here is that each one
- $189\ 00:08:43.150 --> 00:08:45.380$ of these risk-prediction models were derived
- $190\ 00:08:45.380 --> 00:08:48.270$ from separate individual studies.
- $191\ 00:08:48.270 --> 00:08:50.631$ So the question here is, you know, how exactly,
- $192\ 00{:}08{:}50.631 \dashrightarrow 00{:}08{:}53.669$ if you were a clinician, you're eager to sort of take
- 193 00:08:53.669 --> 00:08:57.020 the results that you're seeing here,
- $194\ 00:08:57.020 \longrightarrow 00:08:58.430$ and extend to the clinic,
- 195 00:08:58.430 --> 00:09:00.860 which model do you use, which is right?
- $196\ 00:09:00.860 \longrightarrow 00:09:02.610$ Why are you seeing this level of variability?

- $197~00:09:02.610 \dashrightarrow 00:09:05.840$ This is, of course, concerning, if you, if your goal is
- $198~00{:}09{:}05.840 \dashrightarrow 00{:}09{:}08.070$ to move things towards the clinic, and this also has
- $199\ 00:09:08.070 \longrightarrow 00:09:11.250$ implications in terms of, you know, getting in the way
- 200 00:09:11.250 --> 00:09:12.980 of trying to approve the use of some
- $201\ 00:09:12.980 \longrightarrow 00:09:15.453$ of these, and for clinical use.
- 202 00:09:17.360 --> 00:09:18.950 So why is this happening?
- $203\ 00:09:18.950 \longrightarrow 00:09:21.600$ So there's been a lot of studies have been done
- 204 00:09:21.600 --> 00:09:24.487 that have tied issues to, obviously, sample size
- 205 00:09:24.487 --> 00:09:27.160 in the training studies, smaller sample sizes,
- $206\ 00:09:27.160 \longrightarrow 00:09:30.710$ and models trained on them may lead to more unstable models,
- $207\ 00:09:30.710 \longrightarrow 00:09:32.182$ or less accurate models.
- 208 00:09:32.182 --> 00:09:34.765 Between different studies, you might have
- $209\ 00:09:34.765 \longrightarrow 00:09:36.080$ different prevalences of the clinical outcome.
- $210\ 00:09:36.080 --> 00:09:38.640$ In some studies, you might have higher levels of response,
- $211\ 00:09:38.640 \longrightarrow 00:09:40.390$ and other studies, you might have lower levels of response,
- $212\ 00:09:40.390 \longrightarrow 00:09:42.920$ for example, if you have this binary clinical outcome,
- $213\ 00:09:42.920 \longrightarrow 00:09:46.290$ and also there's issues regarding differences
- $214\ 00:09:46.290 \dashrightarrow 00:09:49.090$ in lab conditions, where the genomic data was extracted.
- $215\ 00{:}09{:}49.090 \dashrightarrow 00{:}09{:}51.630$ We've seen at Lineberger that, depending on the type
- $216\ 00:09:51.630 \dashrightarrow 00:09:54.570$ of extraction, RNA extraction kit that you use,
- $217\ 00:09:54.570 \longrightarrow 00:09:57.740$ you might see differences in the expression of a gene,
- $218\ 00:09:57.740 --> 00:10:00.010$ even from the same original tumor.
- 219 00:10:00.010 --> 00:10:01.640 And also the issue of batch placement,

- $220\ 00:10:01.640 \longrightarrow 00:10:03.730$ which has been widely talked about in the literature,
- $221\ 00:10:03.730 \longrightarrow 00:10:06.170$ where depending on the day you run the experiment,
- 222 00:10:06.170 --> 00:10:10.500 or the technician who's handling the data,
- 223 00:10:10.500 --> 00:10:12.023 you might see slight differences,
- $224\ 00:10:12.023 \longrightarrow 00:10:14.263$ technical differences in expression.
- $225\ 00{:}10{:}15{:}380 \dashrightarrow 00{:}10{:}16{:}810$ There's also differences due to protocols.
- $226\ 00:10:16.810 \longrightarrow 00:10:18.460$ Some trials might have different inclusion
- 227 00:10:18.460 --> 00:10:20.560 and exclusion criteria, so they might be recruiting
- 228 00:10:20.560 --> 00:10:22.280 a slightly different patient population,
- 229 00:10:22.280 --> 00:10:23.640 even though they might be all
- $230\ 00:10:23.640 \longrightarrow 00:10:25.240$ in the context of metastatic breast cancer.
- 231 00:10:25.240 --> 00:10:29.161 All of these things can help impart heterogeneity
- $232\ 00{:}10{:}29.161 \dashrightarrow 00{:}10{:}33.590$ between what the genomic data and the outcome data
- $233\ 00:10:33.590 \longrightarrow 00:10:36.120$ across different studies.
- 234 00:10:36.120 --> 00:10:38.710 In the context of genomic data in particular,
- 235 00:10:38.710 --> 00:10:41.280 there's also this aspect of data preprocessing.
- $236\ 00:10:41.280 --> 00:10:44.510$ For the normalization taking that you use is very important,
- $237\ 00:10:44.510 \longrightarrow 00:10:46.630$ and we'll talk about that in a little bit.
- $238\ 00:10:46.630 \dashrightarrow 00:10:48.330$ And it's a very critical part when it comes
- $239\ 00:10:48.330 \dashrightarrow 00:10:51.680$ to training models, and trying to validate your model
- $240\ 00:10:51.680 \longrightarrow 00:10:54.023$ on other datasets, and depending on the type
- $241\ 00{:}10{:}54.023 \dashrightarrow 00{:}10{:}57.923$ of normalization you use, this could also impact
- $242\ 00:10:57.923 --> 00:10:59.623$ how well your model works.
- $243\ 00{:}11{:}00.480 \dashrightarrow 00{:}11{:}03.427$ In addition, there's also differences in the potential way
- $244\ 00:11:03.427 \longrightarrow 00:11:04.470$ in which you measure gene expression.

 $245\ 00:11:04.470 \longrightarrow 00:11:07.410$ Some trials might use an older technology called microarray.

 $246\ 00{:}11{:}07.410 \dashrightarrow 00{:}11{:}08.940$ I know other trials might use something

247 00:11:08.940 --> 00:11:11.490 relatively more recent called RNAC,

248 00:11:11.490 --> 00:11:12.593 or a particular trial might use

249 00:11:12.593 --> 00:11:14.910 a more targeted platform like NanoString.

 $250\ 00{:}11{:}14.910 --> 00{:}11{:}19.087$ So the differences in platform also can lead to differences

251 00:11:19.087 \rightarrow 00:11:21.470 in your ability to help validate some of these studies.

 $252\ 00{:}11{:}21.470 \longrightarrow 00{:}11{:}23.870$ If you train something in marker rate, it's very difficult

253 00:11:23.870 --> 00:11:26.360 to take that model, and apply it to RNAC,

 $254\ 00{:}11{:}26.360 --> 00{:}11{:}29.900$ because the expression values are just are just different.

 $255\ 00{:}11{:}29.900 \dashrightarrow 00{:}11{:}32.450$ And so, as I mentioned before, this also impacts

 $256\ 00{:}11{:}32.450 \dashrightarrow 00{:}11{:}37.180$ through to normalization on model performance as well.

 $257\ 00:11:37.180 \longrightarrow 00:11:39.660$ So the main thing to remember here is that

 $258\ 00:11:39.660 \longrightarrow 00:11:43.080$ the traditional way in which prediction models,

 $259\ 00{:}11{:}43.080 \dashrightarrow 00{:}11{:}46.130$ based on genomic data for using the clinical training is

260 00:11:46.130 --> 00:11:49.343 typically on the results from a single study.

 $261~00{:}11{:}51.760 \dashrightarrow 00{:}11{:}53.510$ To talk a little bit more about question

 $262\ 00{:}11{:}53.510 \dashrightarrow 00{:}11{:}57.260$ of between-study normalization, and the purpose of this is

 $263\ 00{:}11{:}57.260$ --> $00{:}12{:}00.360$ to put the expression data on basically an even scale,

264 00:12:00.360 --> 00:12:02.330 which helps facilitate training.

 $265\ 00{:}12{:}02.330 \dashrightarrow 00{:}12{:}05.510$ If there's global shifts, and some of the expression values

 $266\ 00:12:05.510 --> 00:12:08.820$ in one sample versus another, it's very difficult to train

- $267\ 00:12:08.820 \longrightarrow 00:12:11.090$ an accurate model in that particular scenario.
- $268\ 00:12:11.090 \longrightarrow 00:12:13.213$ So normalization helps to align
- 269 00:12:13.213 --> 00:12:15.600 the expression you get from different samples,
- $270\ 00:12:15.600$ --> 00:12:19.020 and hopefully across the between difference as well.
- $271\ 00{:}12{:}19.020 \dashrightarrow 00{:}12{:}23.090$ And so the goal here is to eventually predict this outcome
- $272\ 00{:}12{:}23.090 \dashrightarrow 00{:}12{:}25.110$ in a new patient, you plug in the genomic data
- $273\ 00{:}12{:}25.110 \dashrightarrow 00{:}12{:}28.190$ from a new patient in order to get the predicted outcome
- 274 00:12:28.190 --> 00:12:30.350 for that patient based on that training model.
- $275\ 00{:}12{:}30.350 \dashrightarrow 00{:}12{:}33.650$ So the, in order to do that, you also have to normalize
- 276 00:12:33.650 --> 00:12:35.910 the new data to the training data, right?
- $277\ 00{:}12{:}35{.}910 \dashrightarrow 00{:}12{:}38.151$ Because you also want to put the new data on the same scale
- 278 00:12:38.151 --> 00:12:41.450 as a training data, and in the ideal scenario,
- $279\ 00:12:41.450 --> 00:12:43.610$ you would want to make sure that the training samples
- $280\ 00:12:43.610 \longrightarrow 00:12:47.150$ that you use to train your original model are untouched,
- 281 00:12:47.150 --> 00:12:49.120 because what some people try to do is they try
- 282 00:12:49.120 --> 00:12:52.140 to sort of sidestep this normalization issue,
- $283\ 00:12:52.140 \longrightarrow 00:12:54.644$ they would combine the new data with the old training data,
- $284\ 00:12:54.644 \longrightarrow 00:12:57.160$ and renormalize everything at once.
- 285 00:12:57.160 --> 00:12:58.790 And the problem with this is that this changes
- 286 00:12:58.790 --> 00:13:00.727 your training sample values, and in a sense,
- $287\ 00{:}13{:}00.727 \dashrightarrow 00{:}13{:}03.640$ would necessitate the fact that you need to retrain
- $288\ 00:13:03.640 \longrightarrow 00:13:04.473$ your old model again.
- $289\ 00{:}13{:}04.473 \dashrightarrow 00{:}13{:}06.950$ And this leads to instability, and lack of stability

 $290\ 00:13:06.950 \longrightarrow 00:13:09.333$ over time in terms of the model itself.

291 00:13:10.270 --> 00:13:12.231 So in the prior example from ovarian cancer,

292 00:13:12.231 --> 00:13:14.950 this is not as big of an issue, because you have

 $293\ 00:13:14.950 \longrightarrow 00:13:17.590$ all the data you want to work with in hand.

 $294\ 00{:}13{:}17.590 \dashrightarrow 00{:}13{:}19.670$ This is a retrospective study, you have 10 data sets,

 $295\ 00{:}13{:}19.670 --> 00{:}13{:}22.450$ so you just normalize everything at the same time.

 $296\ 00:13:22.450 \longrightarrow 00:13:23.960$ that's in ComBat and frozen RNA.

 $297\ 00:13:23.960 \longrightarrow 00:13:26.950$ And so you can split up those studies into separate training

 $298\ 00{:}13{:}26.950 \dashrightarrow 00{:}13{:}30.750$ and test studies, and they're all rated on the same scale.

 $299\ 00{:}13{:}30.750 \dashrightarrow 00{:}13{:}34.250$ But the problem is that in practice, you're trying to do

 $300\ 00{:}13{:}34.250 \dashrightarrow 00{:}13{:}37.130$ a prospective type of analysis, where when you train

 $301\ 00{:}13{:}37.130 {\:-->\:} 00{:}13{:}40.300$ your model, you're normalizing all of the available studies

 $302~00{:}13{:}40.300 \dashrightarrow 00{:}13{:}43.690$ you have, let's say, and then you use that to predict

 $303\ 00{:}13{:}43.690 {\:{\mbox{--}}}{>} 00{:}13{:}47.010$ the outcome in a future patient, or a future study.

 $304~00{:}13{:}47.010 --> 00{:}13{:}51.150$ And so the problem with that is that you have to find

305 00:13:51.150 --> 00:13:54.610 a good way to align, as I mentioned before,

 $306\ 00:13:54.610 \longrightarrow 00:13:56.780$ the data from that future study for your training samples,

 $307\ 00:13:56.780 --> 00:14:00.080$ and that may not be an easy task to do,

308~00:14:00.080 --> 00:14:02.730 especially for some of the newer platforms like RNAC.

 $309\ 00:14:04.160 \longrightarrow 00:14:06.165$ So taking this problem a step further,

 $310~00{:}14{:}06.165 --> 00{:}14{:}09.830$ what if there's no good cross study normalization approach

 $311\ 00:14:09.830 \longrightarrow 00:14:12.200$ that's available to begin with?

- $312\ 00:14:12.200$ --> 00:14:15.200 This really is going to make things difficult in terms
- $313\ 00:14:15.200 --> 00:14:17.560$ of the training in the model in the first place.
- $314\ 00:14:17.560 \longrightarrow 00:14:20.860$ Another more complicated problem is that you might have
- $315\ 00{:}14{:}20.860 \rightarrow 00{:}14{:}23.770$ different types of platforms at that training time
- $316\ 00{:}14{:}23.770 --> 00{:}14{:}26.040$ For example, you might have the only type of data
- $317\ 00:14:26.040 \longrightarrow 00:14:29.160$ that's available from one study is NanoString in one case,
- $318\ 00:14:29.160 --> 00:14:32.640$ and another study it's only RNAC, so what do you do?
- 319 00:14:32.640 --> 00:14:35.250 And looking forward, as platforms change,
- 320 00:14:35.250 --> 00:14:36.382 as technology evolves, you have different ways
- 321 00:14:36.382 --> 00:14:41.382 of measuring gene expression, for example.
- $322\ 00:14:41.950 --> 00:14:44.440$ So what do you do with the models that are trained
- $323~00{:}14{:}44.440 \dashrightarrow 00{:}14{:}48.060$ on old data, because you can't apply them to the new data?
- 324 00:14:48.060 --> 00:14:49.770 So oftentimes you find this situation
- $325\ 00:14:49.770 \longrightarrow 00:14:53.470$ where you have to retrain new models on these new platforms,
- $326\ 00:14:53.470 \longrightarrow 00:14:57.000$ and the old models are not able to be applied
- $327\ 00:14:57.000 \longrightarrow 00:14:58.440$ directly to this new data types.
- $328\ 00:14:58.440 \longrightarrow 00:15:00.690$ So that leads to waste here.
- 329 00:15:00.690 --> 00:15:03.370 So if you take all of these problems together,
- 330 00:15:03.370 --> 00:15:07.320 regarding cross-study normalization,
- $331\ 00:15:07.320 \longrightarrow 00:15:09.300$ and changes in platform,
- 332 00:15:09.300 --> 00:15:11.390 and a lot of the other issues, you know,
- 333 00:15:11.390 --> 00:15:13.280 regarding replicability that I mentioned,
- $334\ 00:15:13.280 \longrightarrow 00:15:16.580$ it's no wonder that there's only a small handful
- $335\ 00:15:16.580$ --> 00:15:21.430 of expression-based clinically applicable assets have been

336~00:15:21.430 --> 00:15:23.777 approved by the FDA, like Oncotype DX, MammaPrint,

 $337\ 00:15:23.777 \longrightarrow 00:15:27.203$ and Prosigna, because this is a very, very tough problem.

 $338\ 00:15:29.884 \longrightarrow 00:15:32.600\ So\ I$ want to move on with that, to an approach

339 00:15:32.600 --> 00:15:36.130 that we proposed to help tackle this sort of issue

340 00:15:36.130 --> 00:15:39.210 by using this idea of multi-study learning,

 $341\ 00:15:39.210 \longrightarrow 00:15:43.020$ where instead of just using, and deriving, and generating

 $342\ 00{:}15{:}43.020 --> 00{:}15{:}44.810$ models from individual studies, we combine data

 $343\ 00{:}15{:}44.810 --> 00{:}15{:}47.790$ from multiple studies together, and create a consensus model

 $344\ 00:15:47.790 --> 00:15:50.110$ that we use for prediction, which will hopefully be

 $345\ 00:15:50.110 \longrightarrow 00:15:54.140$ more stable, and more accurate down the road.

346 00:15:54.140 --> 00:15:56.400 So this approach of combining data is called

 $347\ 00:15:56.400 --> 00:15:59.190$ horizontal data integration, where we're merging data

 $348\ 00:15:59.190 \longrightarrow 00:16:01.360$ from let's say K different studies.

 $349\ 00{:}16{:}01.360 \dashrightarrow 00{:}16{:}04.300$ And the pro of this approach is that we get increased power,

 $350~00:16:04.300 \dashrightarrow 00:16:06.160$ and the ability to reach some sort of consensus

 $351\ 00:16:06.160 \longrightarrow 00:16:08.860$ across these different studies.

 $352\ 00:16:08.860 \longrightarrow 00:16:11.650$ The negative is that the effect of a gene

 $353\ 00{:}16{:}11.650 \dashrightarrow 00{:}16{:}13.710$ and its relationship to outcome may actually vary

 $354\ 00{:}16{:}13.710 \dashrightarrow 00{:}16{:}16.040$ across studies, and also by, you know, depending on,

 $355\ 00{:}16{:}16.040 \dashrightarrow 00{:}16{:}18.940$ and also the way that you normalize the genes may also vary

 $356\ 00{:}16{:}18.940 \dashrightarrow 00{:}16{:}21.178$ across studies too if we're using published data

- $357\ 00:16:21.178 --> 00:16:23.630$ from some prior publication.
- $358\ 00:16:23.630 \longrightarrow 00:16:25.470$ There's also this issue of sample size and balance.
- $359\ 00:16:25.470 \longrightarrow 00:16:27.630$ You might have a study that has 500 subjects,
- $360\ 00:16:27.630 \longrightarrow 00:16:29.860$ and another one that might have 200 subjects.
- $361~00:16:29.860 \dashrightarrow 00:16:33.820$ So there are some methods that were designed to account for
- $362~00:16:33.820 \longrightarrow 00:16:36.190$ between-study heterogeneity after you do
- $363\ 00:16:36.190 \longrightarrow 00:16:37.830$ horizontal data integration.
- $364\ 00:16:37.830 \longrightarrow 00:16:41.040$ One is called the meta-lasso, another is called
- $365~00{:}16{:}41.040 {\:{\mbox{--}}\!>}~00{:}16{:}43.590$ the AW statistic, but these two methods don't really have
- $366\ 00:16:43.590 \longrightarrow 00:16:46.370$ any prediction aspect about them.
- $367\ 00:16:46.370 --> 00:16:48.496$ They're more about feature selection.
- 368~00:16:48.496 --> 00:16:50.420 Ensembling is one approach that can directly account
- 369 00:16:50.420 --> 00:16:52.310 for between-study heterogeneity
- $370\ 00:16:52.310 \longrightarrow 00:16:54.350$ after horizontal data integration, but there's
- 371 00:16:54.350 --> 00:16:56.870 no explicit future selection step here.
- $372\ 00:16:56.870 \longrightarrow 00:16:58.800$ But all of these approaches assume
- $373\ 00:16:58.800 \longrightarrow 00:17:01.670$ that the data has been pre-normalized.
- $374\ 00:17:01.670 \longrightarrow 00:17:03.350$ As we talked about before,
- $375\ 00:17:03.350 \dashrightarrow 00:17:06.820$ for prospective decision-making, based off a train model,
- $376\ 00:17:06.820 --> 00:17:10.070$ that might be prohibitive in some cases,
- $377\ 00:17:10.070 \longrightarrow 00:17:13.380$ and we need a strategy also to easily predict
- $378~00:17:13.380 \dashrightarrow 00:17:17.153$ and apply these models in new patients.
- 379 00:17:20.260 --> 00:17:24.080 Okay, so moving on, we're going to talk first
- 380 00:17:24.080 --> 00:17:26.670 about this issue of how do we integrate data,
- $381\ 00{:}17{:}26.670 \dashrightarrow 00{:}17{:}30.300$ and sort of sidestep this normalization problem
- $382\ 00{:}17{:}30.300 \dashrightarrow 00{:}17{:}33.190$ at training time, and also at test time where we,

- $383\ 00:17:33.190 \longrightarrow 00:17:35.040$ when we try to predict in new subjects?
- $384\ 00:17:35.040 \longrightarrow 00:17:38.520$ So the approach that we put forth is to use
- $385\ 00{:}17{:}38.520 {\:{\circ}{\circ}{\circ}}>00{:}17{:}40.860$ what's called top scoring pairs, which you can think of
- $386\ 00:17:40.860 --> 00:17:44.560$ as a rank-based transformation of the original set
- $387\ 00:17:44.560 \longrightarrow 00:17:47.320$ of gene expression values from a patient.
- $388\ 00:17:47.320 \longrightarrow 00:17:49.510$ So the idea here originally,
- 389 00:17:49.510 --> 00:17:50.630 when top scoring pairs were introduced,
- 390 00:17:50.630 --> 00:17:53.390 was you're trying to find a pair of genes
- 391 00:17:53.390 --> 00:17:56.390 where it's such that if the expression of gene A
- $392~00{:}17{:}56.390 \dashrightarrow 00{:}17{:}58.908$ in the pair is greater than gene B, that would imply
- $393\ 00:17:58.908 \longrightarrow 00:18:02.970$ that the, let's say, the subtype for that individual is,
- $394\ 00:18:02.970 \longrightarrow 00:18:05.490$ say, subtype one, and if it's less,
- $395\ 00{:}18{:}05.490 \dashrightarrow 00{:}18{:}09.080$ then that implies subtype zero with high probability.
- $396~00:18:09.080 \dashrightarrow 00:18:11.760$ Now, in this case, this sort of approach was developed
- $397~00{:}18{:}11.760 \dashrightarrow 00{:}18{:}14.100$ with when one has a binary outcome variable
- 398 00:18:14.100 --> 00:18:15.070 that you care about.
- $399~00{:}18{:}15.070 \dashrightarrow 00{:}18{:}17.430$ In this case, we're talking about subtype,
- $400\ 00:18:17.430 \longrightarrow 00:18:20.040$ but it could also be tumor response or something else.
- $401\ 00{:}18{:}20.040 \dashrightarrow 00{:}18{:}22.070$ So essentially what you're doing is that you're taking
- $402\ 00{:}18{:}22.070 \dashrightarrow 00{:}18{:}25.270$ these continuous measurements in terms of gene expression,
- $403\ 00:18:25.270 \longrightarrow 00:18:30.270$ or integer, and you are converting that, transforming
- $404\ 00:18:30.600 \longrightarrow 00:18:32.230$ that into basically a binary predictor,
- $405\ 00:18:32.230 \longrightarrow 00:18:34.457$ which takes on the value of the zero or one.

- $406\ 00:18:34.457 --> 00:18:38.210$ And the hope is that that particular transformed value is
- $407\ 00{:}18{:}38.210 \dashrightarrow 00{:}18{:}41.300$ going to be associated with this binary outcome.
- $408\ 00:18:41.300 --> 00:18:43.760$ So the simple assumption in this scenario is
- $409\ 00:18:43.760 \longrightarrow 00:18:46.100$ that the relative rank of these genes
- $410\ 00:18:46.100 --> 00:18:50.810$ in a given sample is predictive of subtype, and that's it.
- $411\ 00{:}18{:}50.810 \dashrightarrow 00{:}18{:}54.490$ And so the example here I have on the right is an example
- $412\ 00:18:54.490 \longrightarrow 00:18:57.790$ of two genes, GSTP1 and ESR1.
- $413\ 00:18:57.790 \longrightarrow 00:18:59.928$ And so you can see here that if you're
- $414\ 00{:}18{:}59.928 \dashrightarrow 00{:}19{:}02.300$ in the upper left quadrant, this is where this gene is
- 415 00:19:02.300 --> 00:19:04.860 greater than this gene expression, it's implying
- 416 00:19:04.860 --> 00:19:07.648 the triangle subtype with high probability,
- 417 00:19:07.648 --> 00:19:10.900 and otherwise it implies the circle subtype.
- $418\ 00{:}19{:}10.900 \dashrightarrow 00{:}19{:}14.350$ So that's the general idea of what we're going for here.
- $419\ 00:19:14.350 \longrightarrow 00:19:16.480$ It's a sort of a rank-based transformation
- 420 00:19:16.480 --> 00:19:19.643 of the original continuous predictor space.
- 421 00:19:20.750 --> 00:19:22.100 So the nice thing about this approach,
- $422\ 00:19:22.100 \longrightarrow 00:19:24.643$ because we're only based on the simple assumption, right?
- $423\ 00:19:24.643 \longrightarrow 00:19:26.710$ That we're only caring about the relative rank
- $424\ 00:19:26.710 \longrightarrow 00:19:28.880$ within a subject, this makes
- $425~00:19:28.880 \longrightarrow 00:19:32.450$ this particular new transformed predictor
- $426\ 00:19:32.450 \longrightarrow 00:19:35.710$ relatively invariant to batch effects, prenormalization,
- $427\ 00{:}19{:}35.710 \dashrightarrow 00{:}19{:}39.410$ and it also most importantly, simplifies merging data
- $428\ 00:19:39.410 \longrightarrow 00:19:40.580$ from different studies.
- $429\ 00{:}19{:}40.580 \dashrightarrow 00{:}19{:}43.090$ Everything is now on the same scale, zero to one,

- $430\ 00:19:43.090 \longrightarrow 00:19:44.987$ so it's very easy to paste together the data
- $431\ 00{:}19{:}44.987 \dashrightarrow 00{:}19{:}49.910$ from different studies, and we can side step this problem
- $432\ 00:19:49.910 \longrightarrow 00:19:52.870$ of trying to pick a cross-normalization approach,
- $433\ 00{:}19{:}52.870 \dashrightarrow 00{:}19{:}55.803$ and then work in this sort of transformed space.
- $434\ 00:19:56.840 \longrightarrow 00:19:59.130$ The other nice thing is that this is easily computable
- $435\ 00:19:59.130 \longrightarrow 00:20:00.690$ for new patients as well.
- $436\ 00:20:00.690 \longrightarrow 00:20:02.670$ If you have a new patient that comes into clinic,
- $437\ 00:20:02.670 \longrightarrow 00:20:04.220$ you just check to see whether the gene A is
- 438 00:20:04.220 --> 00:20:06.290 greater than gene B in terms of expression,
- $439\ 00:20:06.290 \longrightarrow 00:20:11.290$ and then you have your value for this top scoring pair,
- $440\ 00:20:11.350 \longrightarrow 00:20:14.430$ and we don't have to worry as much about normalizing
- 441 00:20:14.430 \rightarrow 00:20:17.740 this patient's raw gene spectrum data
- $442\ 00:20:17.740 --> 00:20:21.470$ to the training sample expression values.
- $443\ 00:20:21.470 \longrightarrow 00:20:23.360$ So essentially what we're doing here is that we're,
- $444\ 00:20:23.360 \longrightarrow 00:20:25.700$ let's enumerate all possible gene pairs for us,
- $445\ 00{:}20{:}25.700 \dashrightarrow 00{:}20{:}28.200$ instead of a candidate genes, and each column here
- $446\ 00:20:28.200 \longrightarrow 00:20:30.530$ in this matrix shown on the right pertains
- 447 00:20:30.530 --> 00:20:33.867 to the zero one values for a particular gene pair J.
- $448\ 00{:}20{:}33.867 \dashrightarrow 00{:}20{:}37.960$ And so this value takes the value of one, it is greater
- $449\ 00{:}20{:}37.960 \dashrightarrow 00{:}20{:}41.200$ than B, in sample I, in pair j, and zero otherwise.
- $450\ 00:20:41.200 \longrightarrow 00:20:44.603$ And then we merge over the common top scoring pairs.

- $451\ 00:20:46.070 --> 00:20:49.050$ So in this example have data from four different studies,
- $452\ 00:20:49.050 \longrightarrow 00:20:50.420$ each indicator by a different color here
- $453\ 00{:}20{:}50.420 \dashrightarrow 00{:}20{:}53.750$ in the first track, and this data pertains to data
- 454 00:20:53.750 --> 00:20:54.900 from two different platforms,
- $455\ 00:20:54.900 \longrightarrow 00:20:56.437$ and three different cancer types.
- $456\ 00{:}20{:}56.437 \dashrightarrow 00{:}20{:}59.220$ And so the clinical outcome here is binary subtype,
- $457\ 00{:}20{:}59.220$ --> $00{:}21{:}02.220$ which is given by the orange and the blue color here.
- $458\ 00{:}21{:}02.220 \dashrightarrow 00{:}21{:}05.350$ So you can see here that we enumerated the TSPs,
- $459\ 00:21:05.350 --> 00:21:07.190$ we merged the data together, and now we have
- $460\ 00:21:07.190 \longrightarrow 00:21:09.340$ this transformed predictor agents.
- $461\ 00:21:09.340 \longrightarrow 00:21:10.430$ And the interesting thing is
- $462\ 00{:}21{:}10.430 {\: -->\:} 00{:}21{:}12.620$ that you can definitely see some patterning here.
- $463~00{:}21{:}12.620 \dashrightarrow 00{:}21{:}15.290$ With any study where you have a particular set of TSPs
- $464\ 00{:}21{:}15.290 \dashrightarrow 00{:}21{:}18.950$ that had taken a value of one, when the subtype is blue,
- $465\ 00:21:18.950 \longrightarrow 00:21:20.850$ and it flips when it's orange.
- $466~00{:}21{:}20.850 \dashrightarrow 00{:}21{:}24.230$ And we see the same general pattern seem to replicate
- 467 00:21:24.230 --> 00:21:25.380 across different studies,
- $468~00{:}21{:}25.380 \dashrightarrow 00{:}21{:}29.168$ but not every top scoring pair changes the same way
- 469 00:21:29.168 --> 00:21:31.700 across different studies.
- $470\ 00:21:31.700 \longrightarrow 00:21:34.970$ So if we cluster the rows here, we can also see
- $471\ 00:21:34.970 --> 00:21:38.120$ some patterns sort of persist where we see
- 472 00:21:38.120 --> 00:21:39.770 some clustering by subtype,
- 473 00:21:39.770 --> 00:21:41.830 but also some clustering by study as well.

- $474\ 00:21:41.830 \longrightarrow 00:21:44.620$ And so what this implies is that there's a relationship
- $475\ 00:21:44.620 \longrightarrow 00:21:47.108$ between TSPs and subtypes, and that can vary across studies,
- $476\ 00{:}21{:}47.108 \dashrightarrow 00{:}21{:}50.107$ which is not too different from what we've talked
- $477\ 00:21:50.107 --> 00:21:51.380$ about regarding the issues we've seen
- $478\ 00:21:51.380 \longrightarrow 00:21:53.339$ in replicability in the past.
- $479\ 00:21:53.339 \longrightarrow 00:21:57.460$ So ideally we would like to see a particular gene pair,
- $480\ 00:21:57.460 \longrightarrow 00:22:00.810$ or TSP vector here take on a value of one,
- 481 00:22:00.810 --> 00:22:02.500 only when there's the orange subtype,
- $482\ 00:22:02.500 \longrightarrow 00:22:04.940$ and zero in the blue subtype, or vice versa.
- 483 00:22:04.940 --> 00:22:06.670 And we wanted to see this pattern replicated
- $484\ 00:22:06.670 --> 00:22:09.680$ across patients in studies, but we see obviously
- $485\ 00:22:09.680 \longrightarrow 00:22:11.840$ that that's not the case.
- $486\ 00{:}22{:}11.840 \dashrightarrow 00{:}22{:}14.650$ So the question now that we've sort of introduced,
- 487 00:22:14.650 --> 00:22:16.530 or proposed is this sort of approach to simplify
- $488\ 00:22:16.530 \longrightarrow 00:22:18.520$ data merging in normalization.
- $489\ 00:22:18.520 \longrightarrow 00:22:20.020$ The question now that we're sort of dealing
- $490\ 00:22:20.020 --> 00:22:22.066$ with is well, how do we actually now find
- $491\ 00:22:22.066$ --> 00:22:25.830 features that are consistent across different studies
- $492\ 00:22:25.830 \longrightarrow 00:22:28.560$ in their relationship with outcome, and also estimate
- $493\ 00:22:28.560 \longrightarrow 00:22:31.793$ their study-level effect, and then use them for prediction?
- $494\ 00{:}22{:}32.860 \dashrightarrow 00{:}22{:}35.408$ So that leads us to the second part of our paper,
- $495\ 00:22:35.408 --> 00:22:39.227$ where we developed a model to help select
- 496 00:22:39.227 --> 00:22:42.027 these particular study-consistent features
- 497 00:22:42.027 --> 00:22:47.027 while accounting for study-level heterogeneity.
- $498\ 00:22:47.100 --> 00:22:49.410$ So to sort of illustrate the idea behind this,

- $499\ 00:22:49.410 --> 00:22:51.700$ let's just start with a simple simulation
- 500 00:22:51.700 --> 00:22:54.130 where we're not doing any normalization,
- 501~00:22:54.130 --> 00:22:56.310 we're not worrying about resuming, everything's fine
- 502 00:22:56.310 --> 00:22:58.730 in terms of the expression values,
- 503 00:22:58.730 --> 00:23:00.170 and we're not doing any selection,
- $504\ 00:23:00.170 \longrightarrow 00:23:02.900$ no TSP transmission either.
- 505 00:23:02.900 --> 00:23:04.760 So we're going to assimilate data pertaining
- 506 00:23:04.760 --> 00:23:06.380 to two, let's say, known biomarkers
- $507\ 00:23:06.380 --> 00:23:08.550$ that are associated with binary subtype.
- 508 00:23:08.550 --> 00:23:10.607 We're going to generate K datasets,
- $509\ 00:23:10.607 --> 00:23:12.200$ and we're going to try three different strategies
- 510~00:23:12.200 --> 00:23:14.690 for learning a prediction model two to these data sets.
- $511~00{:}23{:}14.690 \dashrightarrow 00{:}23{:}18.070$ And at the end, we're going to validate each of those models
- $512\ 00:23:18.070 --> 00:23:18.903$ on an externally-generated data set
- $513\ 00:23:18.903 \longrightarrow 00:23:21.610$ to compare their prediction performance.
- $514~00{:}23{:}21.610 --> 00{:}23{:}25.390$ So to do this, we're going to fit and assume for each study
- $515~00{:}23{:}25.390 \rightarrow 00{:}23{:}27.790$ that we can fit it with a logistic regression model
- $516\ 00:23:27.790 \longrightarrow 00:23:30.640$ to model by our outcome with these two predictors,
- 517 00:23:30.640 --> 00:23:32.410 and in generating these K data sets,
- $518\ 00{:}23{:}32.410 \dashrightarrow 00{:}23{:}34.940$ we're going to vary the number of with respect to K.
- $519\ 00{:}23{:}34.940 \dashrightarrow 00{:}23{:}37.690$ So we might generate two trained data sets five or 10,
- $520\ 00:23:37.690 \longrightarrow 00:23:39.770$ and also change the total sample size of each one,
- $521\ 00{:}23{:}39.770 \dashrightarrow 00{:}23{:}41.830$ and make sure that the sample sizes are in balanced
- $522\ 00:23:41.830 \longrightarrow 00:23:44.790$ across the different studies, and then assume

- $523\ 00:23:44.790 --> 00:23:49.510$ values for the coefficients for each of these predictors
- $524~00{:}23{:}49.510 \dashrightarrow 00{:}23{:}52.750$ to be these values here, and lastly, to induce some sort
- 525~00:23:52.750 --> 00:23:55.787 of heterogeneity across the different training datasets,
- $526~00{:}23{:}55.787 \dashrightarrow 00{:}23{:}59.410$ we're gonna add in sort of like a random value drop
- $527\ 00:23:59.410 \longrightarrow 00:24:01.910$ from the normal distribution, where we're assuming
- $528\ 00:24:02.786 \longrightarrow 00:24:04.610$ this level of variance for this value.
- 529 00:24:04.610 --> 00:24:06.660 So basically we're just injecting heterogeneity
- $530\ 00:24:06.660 --> 00:24:08.403$ into this data generation process.
- 531 00:24:09.310 --> 00:24:10.880 So after we generate the training studies,
- $532\ 00:24:10.880 --> 00:24:12.940$ then we're going to apply three different ways
- $533\ 00:24:12.940 --> 00:24:15.370$ or strategies to the training data.
- 534 00:24:15.370 --> 00:24:17.330 The first is the individual study approach,
- $535~00{:}24{:}17.330 \dashrightarrow 00{:}24{:}19.730$ which we've talked about before, where you train
- 536 00:24:19.730 --> 00:24:22.390 a generalized model separately for each study.
- $537~00{:}24{:}22.390 \dashrightarrow 00{:}24{:}24.600$ The second approach is where you merge the data.
- $538~00{:}24{:}24.600 \dashrightarrow 00{:}24{:}26.430$ Again, we're ignoring the normalization problem here
- $539~00{:}24{:}26.430 \dashrightarrow 00{:}24{:}29.770$ in simulation, obviously, and then train a single GLMM
- 540 00:24:29.770 --> 00:24:31.870 for the combined data, and then lastly,
- $541\ 00:24:31.870 --> 00:24:33.660$ we're going to merge the data, and train
- $542~00{:}24{:}33.660 \dashrightarrow 00{:}24{:}35.120$ a generalized linear mixed model,
- $543\ 00:24:35.120 \longrightarrow 00:24:38.047$ where we explicitly account for a random intercept,
- 544 00:24:38.047 --> 00:24:40.610 and a random slope for each predictor,
- $545~00{:}24{:}40.610 \dashrightarrow 00{:}24{:}44.500$ assuming, you know, a study-level random effect.

- $546\ 00:24:44.500 --> 00:24:48.490$ So after we do that, we'll generate a validation dataset
- $547\ 00{:}24{:}48.490 \dashrightarrow 00{:}24{:}52.224$ from the same approach above, and then predict outcome
- $548\ 00:24:52.224 \longrightarrow 00:24:54.500$ in this validation dataset with respect
- $549\ 00:24:54.500 \longrightarrow 00:24:57.400$ to the models derived from each of these three strategies.
- 550~00:24:59.180 --> 00:25:01.460 So if we look at the individual strategy performance,
- $551\ 00:25:01.460 \longrightarrow 00:25:03.820$ where we fit a GLM logistical regression model
- $552\ 00:25:03.820 \longrightarrow 00:25:06.010$ separately for each study, and then apply it
- $553\ 00:25:06.010 \longrightarrow 00:25:07.710$ to this validation data set, we can check
- $554\ 00:25:07.710 \longrightarrow 00:25:10.580$ the prediction accuracy, we can find that,
- 555 00:25:10.580 --> 00:25:13.860 due to the induced level of heterogeneity
- 556 00:25:13.860 --> 00:25:15.800 between studies in predictor effects,
- $557\ 00:25:15.800 \longrightarrow 00:25:18.060$ in one study, we do really poorly,
- 558 00:25:18.060 --> 00:25:20.070 and another study we do really well,
- $559\ 00:25:20.070 \longrightarrow 00:25:24.060$ and this variation is entirely due to variations
- $560\ 00:25:24.060 \longrightarrow 00:25:26.580$ in the gene subtype relationship.
- $561~00{:}25{:}26.580 \dashrightarrow 00{:}25{:}28.830$ And these predictions obviously vary as a result
- $562\ 00:25:28.830 \longrightarrow 00:25:30.080$ across the different studies.
- $563\ 00:25:30.080 --> 00:25:32.440$ And this will reflect a little bit of what we see
- $564\ 00:25:32.440 \longrightarrow 00:25:35.030$ in some of the examples that we showed earlier,
- $565\ 00{:}25{:}35.030 \dashrightarrow 00{:}25{:}38.003$ studies that were trained on different data sets.
- $566~00{:}25{:}40.410 \dashrightarrow 00{:}25{:}42.550$ And then the second approach is where we combine
- $567\ 00{:}25{:}42.550 \dashrightarrow 00{:}25{:}45.560$ the data sets, and train a single logistical question model
- $568\ 00:25:45.560 \longrightarrow 00:25:46.430$ to predict outcome.
- $569\ 00:25:46.430$ --> 00:25:48.530 And so we see what the median prediction error is better

- $570~00:25:48.530 \longrightarrow 00:25:51.630$ than most of the models here, but if we fit the GLMM,
- 571 00:25:51.630 --> 00:25:53.640 the median prediction (indistinct) gets better
- $572\ 00:25:53.640 --> 00:25:55.800$ than some of the other approaches here.
- 573 00:25:55.800 --> 00:25:57.890 So this is basically just one example.
- $574\ 00:25:57.890 \longrightarrow 00:26:00.120$ So we did this over and over a hundred times
- $575\ 00:26:00.120 \longrightarrow 00:26:02.640$ for every single possible simulation condition,
- 576~00:26:02.640 --> 00:26:07.130 varying K, and the heterogeneity across different studies.
- $577\ 00:26:07.130 --> 00:26:09.560$ And some of the things that we found was that
- 578~00:26:09.560 --> 00:26:12.110 the individual study approach had, as you can see,
- 579 00:26:12.110 --> 00:26:14.460 the worst prediction error overall,
- 580 00:26:14.460 --> 00:26:16.610 combining the data improved this a little bit,
- 581 00:26:16.610 --> 00:26:20.720 but the estimates for the coefficients
- $582\ 00:26:20.720 --> 00:26:23.210$ from the combined GLMM were still biased.
- $583\ 00:26:23.210$ --> 00:26:26.720 There's supposed to be two in this extreme scenario.
- $584~00{:}26{:}26{.}720 \dashrightarrow 00{:}26{:}30.660$ And a kind of heterogeneity with the GLMM mixed model had
- 585 00:26:30.660 --> 00:26:32.460 the best performance out of the rest,
- $586\ 00:26:32.460 --> 00:26:35.004$ and also had the lowest bias in terms
- $587\ 00:26:35.004 --> 00:26:38.630$ of the regression coefficients as well.
- $588\ 00:26:38.630 \longrightarrow 00:26:42.150$ So this is great, but we also have a lot
- 589 00:26:42.150 --> 00:26:43.888 of potential types of pairs.
- $590\ 00:26:43.888 --> 00:26:46.700$ We can't really estimate them all
- $591~00{:}26{:}46.700 \dashrightarrow 00{:}26{:}49.800$ with a GLMM mixed model, so we need to find a way
- $592\ 00:26:49.800 \longrightarrow 00:26:52.030$ where we can, at least in reasonable dimension,
- $593\ 00{:}26{:}52.030 \dashrightarrow 00{:}26{:}54.610$ figure out a way which fixed effects are non-zero,
- 594 00:26:54.610 --> 00:26:56.100 while accounting for, you know,

- 595~00:26:56.100 --> 00:26:58.850 this sort of study-level heterogeneity for each effect.
- $596~00:27:00.460 \longrightarrow 00:27:05.126$ So this led us to develop a pGLMM, which is basically
- $597~00{:}27{:}05.126$ --> $00{:}27{:}08.310$ a high-dimensional generalized intermixed model,
- 598~00:27:08.310 --> 00:27:10.770 where we are able to select fixed and random effects
- $599~00{:}27{:}10.770 \dashrightarrow 00{:}27{:}13.420$ simultaneously using a penalization framework.
- $600\ 00{:}27{:}13.420 \dashrightarrow 00{:}27{:}16.740$ So essentially here, we're assuming that all the predictors
- $601\ 00:27:16.740 \longrightarrow 00:27:18.740$ in the model, we assume a random effect,
- $602\ 00{:}27{:}19.606 \dashrightarrow 00{:}27{:}23.046$ a random slope for each one, and so we were aiming to select
- $603\ 00:27:23.046 \longrightarrow 00:27:27.750$ the features that have non-zero fixed effects
- $604~00{:}27{:}27.750 \dashrightarrow 00{:}27{:}29.540$ in this particular approach, and indeed we're assuming
- $605\ 00:27:29.540 \longrightarrow 00:27:31.550$ these are going to be study-consistent.
- 606 00:27:31.550 --> 00:27:34.820 And to do this, we're going to reorganize
- $607\ 00:27:34.820 \longrightarrow 00:27:38.040$ the linear predictor from the standard GLMM,
- $608\ 00{:}27{:}38.040 \dashrightarrow 00{:}27{:}41.110$ so basically we're starting with the same general likelihood
- $609\ 00:27:41.110 \longrightarrow 00:27:44.220$ for, you know, the generalized mixed model.
- 610 00:27:44.220 --> 00:27:49.024 Here, Y is our outcome, X is our predictor,
- $611\ 00:27:49.024 \longrightarrow 00:27:53.040$ alpha is the alpha K is the random effect
- $612\ 00{:}27{:}53.040 \dashrightarrow 00{:}27{:}58.040$ for the case study, fi here is typically assumed to be
- $613\ 00{:}27{:}58.150 --> 00{:}28{:}02.130$ multi, very normal, means zero, and a covariant
- $614\ 00:28:02.130 --> 00:28:05.140$ on some sort of unstructured covariance matrix typically.
- 615 00:28:05.140 --> 00:28:08.930 And so to sort of simplify this, we factor out
- 616 00:28:08.930 --> 00:28:10.390 the random effects covariance matrix,
- $617\ 00:28:10.390 \longrightarrow 00:28:12.110$ and incorporate into the linear predictor.

- $618\ 00{:}28{:}12.110 \dashrightarrow 00{:}28{:}15.950$ And with some more reorganizing, now we're able to select
- $619\ 00{:}28{:}15.950 \dashrightarrow 00{:}28{:}20.950$ the fixed effects and determine which random effects have
- 620 00:28:21.420 --> 00:28:23.600 true non-covariance, using this sort
- $621\ 00:28:23.600 \longrightarrow 00:28:25.580$ of joint penalization framework.
- $622\ 00{:}28{:}25.580 \dashrightarrow 00{:}28{:}27.540$ If you want more detail, you can check out the publication
- 623 00:28:27.540 --> 00:28:31.340 that I linked above, and I also forgot to send out
- $624\ 00:28:31.340 \longrightarrow 00:28:33.010$ the link to this talk here.
- $625\ 00{:}28{:}33.010 \dashrightarrow 00{:}28{:}35.470$ I'll do that right now, in case you want to check out
- $626\ 00:28:35.470 --> 00:28:38.283$ some of the publications that I'm linking in this talk.
- $627\ 00:28:40.660 \longrightarrow 00:28:42.330$ Okay, so how do we do this estimation?
- 628 00:28:42.330 --> 00:28:44.270 And we use that penalized NCM algorithm,
- $629\ 00{:}28{:}44.270 {\: -->\:} 00{:}28{:}46.510$ where in each step we're drawing from the posterior
- $630\ 00:28:46.510 --> 00:28:47.990$ with respect to the random effects, given
- 631 00:28:47.990 --> 00:28:50.070 the current aspects of the parameters,
- $632\ 00{:}28{:}50.070 {\:\hbox{--}}{>}\ 00{:}28{:}55.070$ and the observed data, using Metropolis point of Gibbs.
- 633~00:28:55.180 --> 00:28:58.262 In the R packets, I'm going to talk about in a little bit,
- $634\ 00:28:58.262 \longrightarrow 00:29:03.000$ we update this to using a Hamiltonian Monte Carlo,
- $635\ 00:29:03.000 \longrightarrow 00:29:03.980$ but in the original version,
- $636\ 00{:}29{:}03.980 \dashrightarrow 00{:}29{:}06.270$ we use Metropolis point of Gibbs, where we skipped
- 637 00:29:07.120 --> 00:29:09.360 components that had zero variance from the M-STEP.
- $638\ 00:29:09.360 \longrightarrow 00:29:11.938$ And then we use, in the M-step,
- $639\ 00:29:11.938 --> 00:29:13.940$ two conditional maximization steps
- 640 00:29:13.940 --> 00:29:17.110 where we first update data, given the draws

- $641\ 00:29:17.110 \longrightarrow 00:29:20.200$ from the E-step, and the prior estimates for gamma here,
- 642 00:29:20.200 --> 00:29:23.740 and then up to gamma using a group penalty.
- $643\ 00:29:23.740 \longrightarrow 00:29:25.400$ So we use a couple of other tricks
- $644\ 00:29:25.400 \longrightarrow 00:29:27.060$ to speed up performance here.
- 645 00:29:27.060 --> 00:29:28.530 I won't go too much into the details there,
- $646\ 00:29:28.530 \longrightarrow 00:29:31.713$ but you can check out the paper for more detail on that.
- 647 00:29:33.330 --> 00:29:34.570 But with this approach, one of the things
- $648~00{:}29{:}34.570 \dashrightarrow 00{:}29{:}36.579$ that we were able to show was that we have
- $649\ 00:29:36.579 --> 00:29:39.290$ similar conclusions regarding bias and prediction error,
- $650\ 00:29:39.290 \longrightarrow 00:29:41.420$ as in the simple setup we had before,
- $651\ 00{:}29{:}41.420 \dashrightarrow 00{:}29{:}43.390$ where in this particular situation, we're simulating
- $652\ 00{:}29{:}43.390 \rightarrow 00{:}29{:}46.920$ a bunch of predictors that do not have any association
- $653\ 00:29:46.920 \longrightarrow 00:29:50.760$ with outcome, either 10 to 50 extra predictors,
- $654\ 00:29:50.760 \longrightarrow 00:29:53.410$ or there's only two that are actually truly relevant.
- 655 00:29:54.480 --> 00:29:55.920 And so the prediction error in this model
- $656\ 00:29:55.920 \longrightarrow 00:29:58.650$ after this penalized selection process is
- $657~00:29:58.650 \longrightarrow 00:30:01.320$ generally the same, if not a little bit worse.
- 658 00:30:01.320 --> 00:30:03.440 And one thing that we find here is that
- $659\ 00:30:03.440 \longrightarrow 00:30:04.940$ the parameters are selected
- $660~00{:}30{:}05.782 \dashrightarrow 00{:}30{:}07.570$ by the individual study approach we're applying now
- $661\ 00:30:07.570 \longrightarrow 00:30:09.960$ at penalized distribution regression model has
- 662 00:30:09.960 --> 00:30:12.859 a low sensitivity to detect the true predictors,
- $663~00{:}30{:}12.859 \dashrightarrow 00{:}30{:}15.542$ and a higher false positive rate in terms of selecting
- $664\ 00:30:15.542 --> 00:30:17.210$ predictors that aren't associated
- $665\ 00:30:17.210 \longrightarrow 00:30:18.880$ with outcome and simulation.

- $666\ 00{:}30{:}18.880 {\:{\mbox{--}}}{>}\ 00{:}30{:}22.660$ And what we find here also is that the approach
- $667~00{:}30{:}22.660 {\:{\mbox{--}}}{>}~00{:}30{:}26.050$ that we developed had a much better sensitivity
- $668\ 00:30:26.050 \longrightarrow 00:30:27.800$ compared to other approaches for selecting
- 669 00:30:27.800 --> 00:30:29.850 the true predictors when accounting
- 670 00:30:29.850 --> 00:30:31.723 for study-level homogeneity,
- $671\ 00:30:31.723 --> 00:30:33.183$ and the lower false positive rate as well.
- $672\ 00{:}30{:}36.060 \dashrightarrow 00{:}30{:}39.080$ The example data sets that I talked about before,
- 673 00:30:39.080 --> 00:30:43.160 the four ones that I showed a figure up earlier,
- $674\ 00{:}30{:}43.160 --> 00{:}30{:}45.030$ we did a whole data study analysis where we trained
- $675\ 00{:}30{:}45.030 \dashrightarrow 00{:}30{:}48.110$ on three studies and held out one of the studies.
- $676~00{:}30{:}48.110 \dashrightarrow 00{:}30{:}50.970$ We found that, you know, the approach that we put forward
- $677\ 00{:}30{:}50.970 \dashrightarrow 00{:}30{:}53.730$ that put combining the data using our TSP approach,
- $678~00{:}30{:}53.730 \dashrightarrow 00{:}30{:}58.060$ and then training a model using the pGLM had
- $679\ 00:30:58.060 --> 00:31:00.100$ the lowest overall holdout study error
- $680\ 00:31:00.100 --> 00:31:02.420$ compared to the approach using just
- 681 00:31:02.420 --> 00:31:05.800 a regular generalized linear model,
- $682\ 00:31:05.800 \longrightarrow 00:31:08.400$ and then also the individual study approach as well.
- $683\ 00{:}31{:}09.320 {\:{\mbox{--}}\!>\:} 00{:}31{:}11.739$ And we also compared it to another post called
- $684~00{:}31{:}11.739 \dashrightarrow 00{:}31{:}14.179$ the Meta-Lasso, which we were able to adapt
- $685~00{:}31{:}14.179 \dashrightarrow 00{:}31{:}15.760$ to do prediction, and we didn't see that much improvement
- $686\ 00:31:15.760 \longrightarrow 00:31:17.000$ of performance as well.
- 687 00:31:17.000 --> 00:31:20.640 But in general, the result that we saw here was
- $688\ 00:31:20.640 --> 00:31:23.259$ that the individual study approach had

 $689\ 00:31:23.259 --> 00:31:26.570$ bad prediction error also across the different studies.

 $690\ 00{:}31{:}26.570 {\:{\circ}{\circ}{\circ}}>00{:}31{:}29.060$ So again, this sort of takes what we've already seen

691 00:31:29.060 --> 00:31:31.190 in the literature in terms of inconsistency,

 $692\ 00{:}31{:}31.190 \dashrightarrow 00{:}31{:}33.330$ in terms of the number of genes that are being selected

 $693\ 00:31:33.330 \longrightarrow 00:31:35.140$ in each of these models, and also the variations

694 00:31:35.140 --> 00:31:38.450 in the prediction accuracy, this sort of reflects

 $695\ 00{:}31{:}38.450 \dashrightarrow 00{:}31{:}41.523$ what we've been seeing in some of this prior work.

696 00:31:43.730 --> 00:31:45.663 So in order to you implement this approach

 $697~00:31:45.663 \longrightarrow 00:31:49.070$ in a more systematic way, my student and I,

698 00:31:49.070 --> 00:31:51.427 Hillary worked, put together an R package called

699 00:31:51.427 --> 00:31:53.880 The GLMMPen R Package.

 $700\ 00:31:53.880 \longrightarrow 00:31:56.050$ So this was just recently submitted

701 00:31:56.050 --> 00:31:58.960 to Journal of Statistical Software, but if you want to track

 $702\ 00:31:58.960 --> 00:32:01.610$ the code, it's available on Github right here,

703~00:32:01.610 --> 00:32:05.170 and we're in the process of submitting this to CRAN as well.

704 00:32:05.170 --> 00:32:07.880 This was sort of like a nice starter project that I gave

 $705\ 00:32:07.880 \longrightarrow 00:32:12.030$ to Hillary to, you know, get her feet wet with coding,

706 00:32:12.030 --> 00:32:14.523 and she's done a really great job, you know,

 $707\ 00:32:14.523 \longrightarrow 00:32:16.280$ in terms of putting this together.

70800:32:16.280 --> 00:32:19.163 And some of the distinct differences between this

 $709\ 00:32:19.163 --> 00:32:21.360$ and what we put forth in the paper is the use

710 00:32:21.360 --> 00:32:23.994 of Hamiltonian Monte Carlo and the east app,

711 00:32:23.994 --> 00:32:25.842 instead of the Metropolis Gibbs.

712 00:32:25.842 --> 00:32:26.980 It's much faster, much more efficient.

 $713\ 00:32:26.980 \longrightarrow 00:32:28.674$ We also have added helper functions

 $714\ 00:32:28.674 \longrightarrow 00:32:32.978$ for the (indistinct) tuning parameters, and also making

715 00:32:32.978 --> 00:32:35.773 some diagnostic plots as well, after convergence.

 $716\ 00:32:36.640 --> 00:32:38.670$ And we've also implemented some speed

 $717\ 00:32:38.670 \longrightarrow 00:32:41.470$ and memory improvements as well, to help with usability.

 $718\ 00:32:44.170 --> 00:32:47.060$ Okay, so we talked about some issues

719 00:32:47.060 --> 00:32:49.850 regarding data integration, and then issues

 $720\ 00:32:49.850 \longrightarrow 00:32:52.490$ with normalization, how that impedes, or can impede

721 00:32:52.490 --> 00:32:55.730 validation in future patients, and then we introduced

722 00:32:55.730 --> 00:32:58.680 a way to sidestep the normalization problem,

723 00:32:58.680 --> 00:33:00.890 using this sort of rank-based transformation,

 $724\ 00:33:00.890 \longrightarrow 00:33:03.394$ and an approach to select consistent predictors

 $725\ 00{:}33{:}03.394 \dashrightarrow 00{:}33{:}06.970$ in the presence of between-study heterogeneity.

726 00:33:06.970 --> 00:33:09.250 So next, I'm going to talk about a case study

727 00:33:09.250 --> 00:33:12.820 in pancreatic cancer, where we took a lot of these tools,

 $728\ 00{:}33{:}12.820$ --> $00{:}33{:}16.450$ and applied them to a problem that some collaboratives

729~00:33:16.450 --> 00:33:20.150 of mine were having, you know, at the cancer center at UNC.

 $730\ 00:33:20.150 \longrightarrow 00:33:23.370$ And to give a brief overview of pancreatic cancer,

731 00:33:23.370 --> 00:33:25.850 it has a really poor prognosis.

732~00:33:25.850 --> 00:33:29.870 Five-year survival is very low, you know, typically 5%.

 $733\ 00:33:29.870 \longrightarrow 00:33:32.480$ The median survival tends to be less than 11 months,

 $734\ 00{:}33{:}32.480 \dashrightarrow 00{:}33{:}35.260$ and the main reason why this is the case is that

 $735\ 00:33:35.260 --> 00:33:37.280$ early detection is very difficult,

736 00:33:37.280 --> 00:33:39.890 and so when patients show up to the clinic,

737 00:33:39.890 --> 00:33:43.850 they're often times in later stages, or gone metastatic.

 $738\ 00{:}33{:}43.850 \dashrightarrow 00{:}33{:}48.030$ So for those reasons, it's really important to place

 $739\ 00:33:48.030 \longrightarrow 00:33:51.040$ patients on optimal therapies upfront, and choosing

 $740\ 00:33:51.040 \longrightarrow 00:33:53.980$ the best therapies, specifically for a patient, you know,

 $741\ 00:33:53.980 \longrightarrow 00:33:55.920$ when after they're diagnosed.

 $742\ 00:33:55.920 --> 00:33:58.850$ So breast and colorectal cancers have

 $743\ 00:33:58.850$ --> 00:34:02.350 long-established subtyping systems that are often times used.

 $744\ 00:34:02.350 \longrightarrow 00:34:04.130$ Again, an example of a few of them in breast

 $745\ 00:34:04.130 --> 00:34:05.770$ that have actually been approved by the FDA

 $746\ 00:34:05.770 \longrightarrow 00:34:09.190$ for clinical use, but there's nothing available for,

 $747\ 00:34:09.190 \longrightarrow 00:34:11.480$ in terms of precision medicine for pancreatic cancer,

748 00:34:11.480 --> 00:34:14.260 except for a couple of targeted therapies

 $749\ 00:34:14.260 \longrightarrow 00:34:15.543$ for specific mutations.

750 00:34:17.430 --> 00:34:19.870 So in 2015, the Yeh Lab at UNC,

751 00:34:19.870 --> 00:34:23.890 using a combination of non-negative matrix factorization

752 00:34:23.890 --> 00:34:27.480 and consensus clustering, where it was able to discover

 $753\ 00:34:27.480 \longrightarrow 00:34:29.996$ two potentially clinically applicable subtypes

 $754\ 00{:}34{:}29.996 {\:{\mbox{--}}}{>}\ 00{:}34{:}33.070$ in pancreatic cancer, which they call basal-like,

 $755\ 00:34:33.070 --> 00:34:37.036$ the orange line here, which has a much worse survival

 $756\ 00:34:37.036 \longrightarrow 00:34:40.890$ compared to this classical subtype in blue,

 $757\ 00:34:40.890 \longrightarrow 00:34:43.677$ where patients seem to do a little bit better.

758 00:34:43.677 --> 00:34:44.940 And so with this approach, they used

 $759\ 00{:}34{:}44.940 \dashrightarrow 00{:}34{:}48.140$ this unsupervised learning, set of learning techniques

 $760\ 00:34:48.140 \longrightarrow 00:34:51.010$ to derive these novel subtypes.

761 00:34:51.010 --> 00:34:54.010 And so when they took these subtypes and overlaid them

 $762\ 00:34:54.010 --> 00:34:55.640$ from data from a clinical trial where they had

 $763\ 00:34:55.640$ --> 00:34:57.540 treatment response information, they found that

 $764~00{:}34{:}57.540 \dashrightarrow 00{:}35{:}02.280$ largely patients who with basal-like subtype tended to have

 $765\ 00:35:02.280 \longrightarrow 00:35:03.650$ tumors that did not respond

 $766\ 00:35:03.650 \longrightarrow 00:35:06.317$ to common first-line therapy, Folfirinox.

 $767\ 00:35:06.317 \longrightarrow 00:35:08.260$ Their tumors tended to grow from baseline.

 $768~00{:}35{:}08.260 \dashrightarrow 00{:}35{:}11.920$ Whereas patients that were the classical subtype tended

 $769\ 00:35:11.920 --> 00:35:15.640$ to respond better on average compared to the basal samples.

 $770\ 00:35:15.640 --> 00:35:19.580$ So the implications here are that if you are,

771 00:35:19.580 --> 00:35:22.680 subtype is basal, you should avoid Folfirinox

772 00:35:22.680 --> 00:35:25.020 at baseline entry with an alternative type drug,

773 00:35:25.020 --> 00:35:27.387 typically Gemcitabine and nab-paclitaxel Abraxane.

774 00:35:27.387 --> 00:35:28.740 And then for classical patients,

 $775\ 00:35:28.740 \longrightarrow 00:35:30.290$ they should receive Folfirinox.

776 00:35:32.114 --> 00:35:34.130 But the problem here is that subtyping clearly is

777 00:35:34.130 --> 00:35:35.540 an unsupervised learning approach, right?

 $778\ 00:35:35.540 \longrightarrow 00:35:36.750$ It's not a prediction tool.

779 00:35:36.750 --> 00:35:41.750 So it's, this approach is quite limited if it,

 $780\ 00:35:42.240 --> 00:35:44.970$ when you have to do, assign a subtype

781 00:35:44.970 --> 00:35:47.710 in a small number of patients, it just doesn't work.

782 00:35:47.710 --> 00:35:49.610 So what some people have done in the past,

 $783\ 00:35:49.610 --> 00:35:52.220$ so they simply take new patients, and recluster them

 $784\ 00:35:52.220 \longrightarrow 00:35:54.570$ with existing, their existing training samples.

 $785\ 00{:}35{:}54.570 \dashrightarrow 00{:}35{:}58.140$ The problem with that is that the subtype assignments

786 00:35:58.140 --> 00:36:00.100 for those original training samples might change

 $787\ 00:36:00.100 \longrightarrow 00:36:01.110$ when they recluster it.

 $788\ 00:36:01.110 --> 00:36:02.660$ So there's not a stable, it's not really

 $789\ 00:36:02.660 \longrightarrow 00:36:04.930$ a stable approach to really do this.

 $790~00{:}36{:}04.930 \dashrightarrow 00{:}36{:}07.938$ So the goal here was to leverage the existing training data

791 00:36:07.938 --> 00:36:11.517 that's available to the lab, which come

 $792\ 00:36:11.517 --> 00:36:14.855$ from different platforms to come up with an approach,

793 00:36:14.855 --> 00:36:17.677 a classifier to predict subtype, given

794 00:36:17.677 --> 00:36:19.930 new subtypes information, genomic,

795 00:36:19.930 --> 00:36:23.394 a new patient's genomic data, to get subtype,

796 00:36:23.394 --> 00:36:24.890 a predicted subtype for that individual.

797 00:36:24.890 --> 00:36:28.410 So of course, in that scenario, we also want to make sure

798~00:36:28.410 --> 00:36:30.670 that that process is simplified, and that we make

799 00:36:30.670 --> 00:36:32.760 this prediction process as easy as possible,

 $800\ 00{:}36{:}32.760 {\:{\mbox{--}}\!>} 00{:}36{:}36.157$ in the face of all these issues we talked about regarding

 $801\ 00:36:36.157 \longrightarrow 00:36:39.780$ normalization and the training data to each other,

 $802\ 00{:}36{:}39.780 \dashrightarrow 00{:}36{:}42.440$ and also normalization of the new patient data

 $803\ 00:36:42.440 \longrightarrow 00:36:43.940$ to the existing training data.

 $804\ 00:36:45.260 \longrightarrow 00:36:48.820$ So using some of the techniques that we just talked about.

 $805\ 00:36:48.820$ --> 00:36:50.760 we came up with a classifier that we call PurIST,

 $806\ 00:36:50.760 \longrightarrow 00:36:53.430$ which was published in the CCR last year,

 $807\ 00:36:53.430 \longrightarrow 00:36:56.270$ where essentially we were able to do that.

 $808\ 00{:}36{:}56.270 \dashrightarrow 00{:}36{:}59.170$ We take in the genomic data for a previous patient,

 $809\ 00:36:59.170 \longrightarrow 00:37:04.170$ and able to predict subtype based off of that,

 $810\ 00:37:04.180 \longrightarrow 00:37:05.800$ the train model that we developed.

 $811\ 00:37:05.800$ --> 00:37:08.754 And in this particular paper, we had nine data sets

 $812\ 00:37:08.754 --> 00:37:10.750$ that we curated from the literature, three of which

 $813\ 00:37:10.750 \longrightarrow 00:37:12.578$ that we used for training,

 $814\ 00:37:12.578 \longrightarrow 00:37:13.540$ the rest we used for validation.

 $815\ 00:37:13.540 \longrightarrow 00:37:16.400$ And we did consensus clustering on all of them,

 $816\ 00:37:16.400 \longrightarrow 00:37:18.110$ using the gene list that was derived

817 00:37:18.110 --> 00:37:19.623 from the original publication,

818 00:37:20.978 --> 00:37:22.800 where the subtypes were discovered to get labels,

819 00:37:22.800 --> 00:37:25.180 subject labels for each one of the subjects

 $820\ 00:37:25.180 \longrightarrow 00:37:26.820$ in each one of these studies.

821 00:37:26.820 --> 00:37:30.370 So once we had those labels from consensus clustering,

 $822\ 00:37:30.370 \longrightarrow 00:37:33.170$ we then merged the data from our three largest studies,

 $823\ 00:37:33.170 \longrightarrow 00:37:34.970$ which are our training studies.

824 00:37:34.970 --> 00:37:37.340 We did some sample for filtering based on quality,

 $825\ 00{:}37{:}37.340 \dashrightarrow 00{:}37{:}40.070$ and we filtered some genes based off of, you know,

 $826\ 00:37:40.070 --> 00:37:42.440$ expression levels and things like that.

827 00:37:42.440 --> 00:37:45.010 And then we applied our previous training approach

 $828\ 00:37:45.010 --> 00:37:49.917$ to get a small subset of top scoring pairs from the data.

 $829\ 00:37:49.917 --> 00:37:51.230$ And in this case, we have eight that we selected,

830 $00:37:51.230 \longrightarrow 00:37:55.430$ each with their own study-level coefficient.

831 $00:37:55.430 \rightarrow 00:37:57.580$ And then for prediction, the process is very simple,

832 00:37:57.580 --> 00:38:00.300 we just check in that patient, whether gene A is greater

833 00:38:00.300 --> 00:38:02.130 than gene D for each of these pairs,

 $834\ 00:38:02.130 \longrightarrow 00:38:05.240$ and that gives us their binary vector of ones and zeros.

 $835\ 00:38:05.240 --> 00:38:08.630$ We multiply that by the coefficients from the train model.

 $836\ 00{:}38{:}08.630 \dashrightarrow 00{:}38{:}11.460$ This is basically just calculating a linear predictor

 $837\ 00:38:11.460 --> 00:38:13.750$ from this logistic regression model.

 $838\ 00:38:13.750 \longrightarrow 00:38:14.850$ And then we can convert that

839 $00:38:14.850 \longrightarrow 00:38:18.130$ to a predicted probability of being basal.

 $840\ 00:38:18.130 \longrightarrow 00:38:23.130$ So using this approach, we were able to select

841 00:38:23.130 --> 00:38:25.170 16 genes pertaining to eight subtypes,

 $842\ 00:38:25.170 --> 00:38:27.210$ but we can find here that the predictions

 $843\ 00:38:27.210 \longrightarrow 00:38:30.760$ from this model tends to coincide very strongly

 $844\ 00:38:30.760 \longrightarrow 00:38:32.930$ with the labels that were collected

 $845\ 00:38:32.930 \longrightarrow 00:38:33.980$ using consensus clusters.

 $846\ 00{:}38{:}33.980 \dashrightarrow 00{:}38{:}36.498$ So that gives us some confidence that reproducing

 $847\ 00{:}38{:}36.498 --> 00{:}38{:}41.070$ in some way, you know, this, the result that we got

 $848\ 00:38:41.070 \longrightarrow 00:38:43.100$ using this clustering approach.

 $849\ 00:38:43.100 \longrightarrow 00:38:46.100$ You can also clearly see here that as the subtype changes,

 $850\ 00{:}38{:}46.100 \dashrightarrow 00{:}38{:}48.620$ that you see flips in the expression in each one

- $851\ 00:38:48.620 \longrightarrow 00:38:51.760$ of the pairs of genes that we collected
- $852\ 00:38:51.760 \longrightarrow 00:38:53.680$ in this particular study.
- $853\ 00:38:53.680 \longrightarrow 00:38:55.010$ And then when we applied this model
- $854\ 00:38:55.010$ --> 00:38:58.740 to six external validation dataset, we found that it had
- 855 00:38:58.740 --> 00:39:01.330 a very good performance in terms of recapitulating subtype,
- $856\ 00:39:01.330 --> 00:39:03.660$ where we had a relatively good sensitivity
- $857\ 00:39:03.660 \longrightarrow 00:39:07.090$ and specificity in each case, which we owe part
- $858\ 00{:}39{:}07.090$ --> $00{:}39{:}08.185$ to the fact that we don't have to worry as much
- $859\ 00{:}39{:}08.185 \dashrightarrow 00{:}39{:}13.185$ about this sort of cross-study normalization training time
- $860\ 00:39:13.218 \longrightarrow 00:39:16.570$ or test time, and also the fact that we leveraged
- 861 00:39:17.407 --> 00:39:18.620 multiple data sets when selecting
- $862\ 00:39:20.570 \longrightarrow 00:39:21.690$ the predictors for this model.
- $863\ 00:39:21.690 --> 00:39:23.870$ And so when we looked at the predictive values
- $864\ 00:39:23.870 \longrightarrow 00:39:26.510$ in these holdout studies, the predictive subtypes,
- $865\ 00{:}39{:}26.510 {\:{\mbox{--}}}{>}\ 00{:}39{:}29.660$ we recapitulated the differences in survival
- $866\ 00:39:29.660 \longrightarrow 00:39:31.850$ that we observed in other studies as well,
- $867\ 00:39:31.850 \longrightarrow 00:39:34.354$ where basal-like patients do a lot worse
- $868\ 00:39:34.354 \longrightarrow 00:39:36.700$ compared to classical patients.
- $869\ 00{:}39{:}36.700 \dashrightarrow 00{:}39{:}38.690$ If you want to look a little bit more at the details
- 870 00:39:38.690 --> 00:39:41.100 in this paper, you can check out this link here,
- 871 00:39:41.100 --> 00:39:43.720 and if you want to access the code that we used
- $872\ 00:39:43.720 \longrightarrow 00:39:45.460$ to make these predictions, that's available
- 873 00:39:45.460 --> 00:39:48.453 on this Github page at this link right here.

 $874\ 00{:}39{:}50.380 \dashrightarrow 00{:}39{:}53.310$ Another thing that we were able to show is that for patients

 $875\ 00{:}39{:}53.310 \dashrightarrow 00{:}39{:}56.450$ that had samples that are collected through different modes

 $876\ 00:39:56.450$ --> 00:40:00.070 of collection, whether it was bulk, FNA, FFPE,

 $877\ 00:40:00.070 \longrightarrow 00:40:03.020$ we found that the predictions in these patients tend to be

 $878\ 00:40:03.020 \longrightarrow 00:40:06.430$ highly consistent, and this is basically deriving

 $879\ 00:40:06.430 \longrightarrow 00:40:08.820$ itself, again, from the simple assumption behind TSPs,

 $880\ 00{:}40{:}08.820 \dashrightarrow 00{:}40{:}13.060$ where the relative rank within the subject of the expression

 $881\ 00:40:13.060 \longrightarrow 00:40:14.990$ of these genes is predicted.

 $882\ 00:40:14.990 \longrightarrow 00:40:17.310$ So as long as that is being preserved,

 $883\ 00{:}40{:}17.310 \dashrightarrow 00{:}40{:}21.440$ then you should be able to have the model predict well

 $884\ 00:40:21.440 \longrightarrow 00:40:23.289$ in different scenarios.

 $885\ 00:40:23.289 \longrightarrow 00:40:27.630$ So when we also went through CLIA validation for this tool,

 $886~00{:}40{:}27.630 \dashrightarrow 00{:}40{:}31.154$ we also confirmed 95% agreement between replicated runs

 $887\ 00{:}40{:}31.154$ --> $00{:}40{:}36.154$ in other platforms, and we also confirmed concordance

888~00:40:37.950 --> 00:40:42.770 between NanoString and RNAC, also through different modes

889 $00:40:42.770 \longrightarrow 00:40:43.603$ of sample collection.

 $890~00{:}40{:}43.603 \dashrightarrow 00{:}40{:}46.690$ So right now this is the first clinically applicable test

891 00:40:46.690 --> 00:40:50.610 for a prospect of first line treatment selection in PDAC.

 $892\ 00{:}40{:}50.610 \dashrightarrow 00{:}40{:}54.250$ And right now we do have a study that just recently opened

893 00:40:54.250 --> 00:40:56.390 at the Medical College of Wisconsin that's using PurIST

894 00:40:56.390 --> 00:40:58.390 for prospect of treatment selection,

 $895\ 00:40:58.390 \longrightarrow 00:41:01.970$ and we have another one opening at University of Rochester,

 $896\ 00:41:01.970 \longrightarrow 00:41:06.320$ and also at UNC soon as well.

 $897~00{:}41{:}06.320 \dashrightarrow 00{:}41{:}09.510$ So this is just an example about how you can take

898 00:41:09.510 --> 00:41:14.040 a problem, you know, in, from the literature,

 $899\ 00:41:14.040 --> 00:41:17.570$ from your collaborators, come up with a method,

900 00:41:17.570 --> 00:41:22.150 and some theory behind it, and really be able to come up

901 00:41:22.150 --> 00:41:24.310 with a good solution that is robust,

902 00:41:24.310 --> 00:41:27.440 and that can really help your collaborative

 $903\ 00:41:27.440 \longrightarrow 00:41:29.763$ at your institution and elsewhere.

 $904\ 00:41:31.850 \longrightarrow 00:41:33.510$ Okay, so that was the case study.

 $905\ 00:41:33.510 --> 00:41:34.560$ To talk about some current work

906 00:41:34.560 --> 00:41:36.150 that we're doing just briefly.

 $907\ 00{:}41{:}36.150 \dashrightarrow 00{:}41{:}39.350$ So we wanted to think about how we can also scale up the,

 $908~00:41:39.350 \longrightarrow 00:41:42.200$ this particular framework that we developed for the pGLMM,

909 00:41:42.200 --> 00:41:44.190 and one idea that we're pursuing right now

910 00:41:44.190 --> 00:41:46.400 with my student Hillary, is that we're thinking

911 00:41:47.773 --> 00:41:49.751 about using, borrowing ideas from factor analysis

912 00:41:49.751 \rightarrow 00:41:52.570 to decompose, do a deep, deterministic decomposition

913 00:41:52.570 --> 00:41:56.370 of the random effects to a lower dimensional space,

 $914\ 00:41:56.370 \longrightarrow 00:41:59.690$ where essentially, we can essentially map

915 00:41:59.690 --> 00:42:02.780 between the lower dimensional space (indistinct) factors,

916 00:42:02.780 --> 00:42:05.220 which is r-dimensional, to this higher dimensional space,

917 00:42:05.220 --> 00:42:10.220 using some by matrix B, which is q by r,

918 00:42:11.920 --> 00:42:16.050 and essentially in doing so, this reduces the dimension

919 00:42:16.050 --> 00:42:19.243 of the integral in the Monte Carlo EM algorithm.

920 00:42:20.253 --> 00:42:21.730 So rather than having to do approximate integral

921 00:42:21.730 --> 00:42:23.560 and q dimensions, which can be difficult,

922 00:42:23.560 --> 00:42:26.870 you can work in a much lower space in terms of integral,

 $923\ 00:42:26.870 \longrightarrow 00:42:28.710$ and then have this additional problem

924 00:42:28.710 --> 00:42:30.590 of trying to estimate this matrix,

 $925\ 00:42:30.590 \longrightarrow 00:42:33.170$ and not back to the original dimension cube.

926 00:42:33.170 --> 00:42:34.840 So that's something that we're just starting to work on

 $927~00{:}42{:}34.840 \dashrightarrow 00{:}42{:}38.550$ right now, and another thing that we're starting to work on

928 00:42:38.550 --> 00:42:41.229 is the idea of trying to extend some of the work

929 00:42:41.229 --> 00:42:42.860 in variational autoencoders

930 00:42:42.860 --> 00:42:45.200 that my student David is working on now.

931 00:42:45.200 --> 00:42:48.253 His current work is trying to account for missing data

 $932\ 00{:}42{:}48.253 \operatorname{--}{>} 00{:}42{:}51.350$ when trying to train these sort of deep learning models,

933 00:42:51.350 --> 00:42:55.170 the VAEs unsupervised learning model's oftentimes used

 $934\ 00:42:55.170 \longrightarrow 00:42:56.010$ for dimensional reduction.

935 00:42:56.010 --> 00:42:57.020 You might've heard of it

936 00:42:57.020 --> 00:43:01.330 in single cells sequencing applications.

937 00:43:01.330 \rightarrow 00:43:02.850 But the question that we wanted to address is, well,

938 00:43:02.850 --> 00:43:04.990 what if you have missing data, you know,

939 00:43:04.990 --> 00:43:08.197 in your input features X, which might be (indistinct)?

 $940\ 00:43:09.529 --> 00:43:14.260$ So essentially we were able to develop input.

941 00:43:14.260 --> 00:43:17.280 So we have a pre-print up right now, it's the code,

 $942\ 00:43:17.280 \longrightarrow 00:43:20.240$ and we're looking to extend this, where essentially,

943 00:43:20.240 --> 00:43:22.680 rather than worrying about this latent space Z,

 $944\ 00:43:22.680 \longrightarrow 00:43:24.640$ which we're assuming that that encodes a lot

945 00:43:24.640 --> 00:43:26.910 of the information in the original data,

946 00:43:26.910 --> 00:43:28.910 we replaced that with learning the posterior

 $947\ 00:43:28.910 --> 00:43:31.550$ of the random effect, given the observed data.

948 00:43:31.550 --> 00:43:34.260 And then in the second portion here, we replaced

949 00:43:34.260 --> 00:43:38.820 this generative model with the general model of y given X

 $950\ 00:43:38.820 \longrightarrow 00:43:40.680$ in the random effects.

 $951\ 00:43:40.680 \longrightarrow 00:43:42.880$ So that's another avenue that can allow us

952 00:43:42.880 --> 00:43:44.650 to hopefully account for non-linearity,

 $953\ 00:43:44.650 \longrightarrow 00:43:47.100$ and arbitrator action between features as well.

954 00:43:47.100 --> 00:43:49.179 And also it might be an easier way to scale up

 $955\ 00:43:49.179 \longrightarrow 00:43:52.570$ some of the analysis we've done too,

956 00:43:52.570 --> 00:43:55.330 which I've already mentioned.

 $957\ 00:43:55.330 \longrightarrow 00:43:58.361$ Okay, so in terms of some concluding thoughts,

958~00:43:58.361 --> $00:44:02.762~\mathrm{I}$ talked a lot about how the original subtypes were derived

959 00:44:02.762 --> 00:44:05.930 for this pancreatic cancer case study using NMF

 $960\ 00{:}44{:}05.930 \dashrightarrow 00{:}44{:}09.310$ and consensus clustering to get two subtypes.

961 00:44:09.310 \rightarrow 00:44:12.310 But there were also other groups that are published,

962 00:44:12.310 --> 00:44:15.540 subtyping systems, that in one, they found

 $963\ 00:44:15.540 \longrightarrow 00:44:19.150$ three subtypes, and in another one they found four subtypes.

964 00:44:19.150 --> 00:44:22.042 So the question is, well, you know, well,

- 965 00:44:22.042 --> 00:44:23.270 which one do we use?
- 966 00:44:23.270 --> 00:44:26.130 Again, this is also confusing for practitioners
- $967~00{:}44{:}26.130 \dashrightarrow 00{:}44{:}28.950$ about which approach might be more meaningful
- $968\ 00:44:28.950 \longrightarrow 00:44:30.110$ in the clinical setting.
- $969\ 00:44:30.110 \longrightarrow 00:44:31.840$ And each of these approaches were also derived
- $970\ 00:44:31.840 --> 00:44:35.480$ using NMF and consensus clustering, and they were done
- 971 00:44:35.480 --> 00:44:37.540 separately on different patient cohorts
- 972 00:44:37.540 --> 00:44:39.140 at different institutions.
- $973\ 00:44:39.140 \longrightarrow 00:44:41.460$ So you can see that this is another reflection
- 974 00:44:41.460 --> 00:44:44.930 of heterogeneity in single-study learning,
- $975\ 00{:}44{:}44.930 \dashrightarrow 00{:}44{:}48.680$ and how we can get these different or discrepant results
- $976\ 00:44:48.680 --> 00:44:52.170$ from applying the same technique to 200 genus datasets
- 977 00:44:52.170 --> 00:44:54.400 that were generated at different places.
- $978~00{:}44{:}54.400 \dashrightarrow 00{:}44{:}57.000$ So of course this creates another problem, you know,
- 979 00:44:57.000 --> 00:44:59.730 who's right, which approach do we use?
- $980\ 00:44:59.730 --> 00:45:03.350$ And it's kind of like a circular argument here.
- 981 00:45:03.350 --> 00:45:06.870 So in the paper that I mentioned before with PurIST,
- $982\ 00:45:06.870 \longrightarrow 00:45:09.260$ another thing that we did is we overlaid
- 983 00:45:09.260 --> 00:45:11.839 the others subtype system calls
- $984\ 00:45:11.839 --> 00:45:14.790$ with the observed clinical outcomes
- 985 00:45:14.790 --> 00:45:16.650 for the studies that we collected.
- $986\ 00:45:16.650 \longrightarrow 00:45:19.120$ And one of the things that we found was that,
- 987 00:45:19.120 --> 00:45:21.920 and these other subtyping systems,
- 988 00:45:21.920 --> 00:45:23.840 each of them also had something,
- 989 00:45:23.840 --> 00:45:26.990 something that was very similar to the basal-like subtype,

990 00:45:26.990 --> 00:45:29.860 and for the remaining subtypes, they had survival

991 00:45:29.860 --> 00:45:32.650 that was similar to the classical subtype.

992 00:45:32.650 --> 00:45:35.210 So one of the arguments that we made was that,

993 00:45:35.210 --> 00:45:36.813 well, if the clinical outcomes are the same

994 00:45:36.813 --> 00:45:39.570 for the other subtypes, you know,

995 00:45:39.570 --> 00:45:41.500 are they exactly right necessary

996 00:45:41.500 --> 00:45:43.250 for clinical decision-making?

 $997\ 00:45:43.250 --> 00:45:45.540$ That was one argument that we put forth.

998 00:45:45.540 --> 00:45:48.420 And when we looked at the response data, again,

999 00:45:48.420 --> 00:45:51.410 we saw that one of the subtypes in the other approaches

 $1000\ 00{:}45{:}51.410$ --> $00{:}45{:}56.020$ also overlapped the basal-like subtype in terms of response.

1001 00:45:56.020 --> 00:45:57.430 And then for the remaining subtypes,

 $1002\ 00{:}45{:}57.430 \longrightarrow 00{:}46{:}00.900$ they were just kind of randomly dispersed at the other end,

 $1003\ 00:46:00.900 \longrightarrow 00:46:05.280$ you know, of the spectrum here in terms of tumor present,

 $1004\ 00:46:05.280 \longrightarrow 00:46:06.730$ tumor change after treatment.

 $1005\ 00:46:06.730 --> 00:46:09.310$ So the takeaway here is that heterogeneity

 $1006\ 00:46:09.310 \longrightarrow 00:46:13.660$ between studies also impacts tasks in unsupervised learning,

 $1007\ 00:46:13.660 --> 00:46:16.330$ like the NMF+ consensus clustering approach

 $1008\ 00:46:16.330 \longrightarrow 00:46:18.000$ to discover subtypes.

 $1009\ 00{:}46{:}18.000 \dashrightarrow 00{:}46{:}20.770$ And what this also does is, as you can imagine.

 $1010\ 00{:}46{:}20.770 --> 00{:}46{:}23.690$ this injects a lot of confusion into the literature,

 $1011\ 00{:}46{:}23.690 \dashrightarrow 00{:}46{:}27.119$ and can also slow down the process of translating

1012 00:46:27.119 --> 00:46:29.980 some of these approaches to the clinic.

- $1013\ 00:46:29.980 \longrightarrow 00:46:31.960$ So this also underlies the need
- $1014\ 00:46:31.960 \longrightarrow 00:46:35.280$ for replicable cross-study sub discovery approaches,
- $1015\ 00{:}46{:}35.280 \dashrightarrow 00{:}46{:}40.280$ for replicable approaches for unsupervised learning.
- $1016\ 00:46:40.580 \longrightarrow 00:46:42.980$ That's something that, you know, something that we might,
- 1017 00:46:42.980 --> 00:46:45.630 we hope to be working on in the future,
- $1018\ 00:46:45.630 \longrightarrow 00:46:47.623$ and we hope to see more work on as well.
- $1019\ 00{:}46{:}48.660 \operatorname{{\mathsf{-->}}} 00{:}46{:}52.640$ So to summarize the, one of the major points
- $1020\ 00:46:52.640 \longrightarrow 00:46:55.470$ of this talk was to introduce and discuss, you know,
- $1021\ 00:46:55.470 \longrightarrow 00:46:58.100$ replicability issues in genomic prediction models,
- $1022\ 00{:}46{:}58.100 \dashrightarrow 00{:}47{:}01.080$ supervised learning, that stems from technical,
- $1023\ 00:47:01.080 \longrightarrow 00:47:03.420$ and also non-technical sources.
- $1024\ 00{:}47{:}03.420 \dashrightarrow 00{:}47{:}06.770$ We also introduced a new approach to facilitate
- 1025 00:47:06.770 --> 00:47:08.840 data integration and multistory learning
- $1026\ 00:47:08.840 \longrightarrow 00:47:12.426$ in a way that captures between-study heterogeneity,
- $1027\ 00{:}47{:}12.426 {\: \hbox{--}}{>}\ 00{:}47{:}15.400$ and showed how this can be used for the prediction
- $1028\ 00{:}47{:}15.400$ --> $00{:}47{:}20.360$ of subtype for pancreatic cancer, and also introduced
- $1029\ 00:47:20.360 \longrightarrow 00:47:22.522$ some scalable methods and future direction
- $1030\ 00:47:22.522 --> 00:47:24.933$ in replicable subtype discovery.
- $1031\ 00:47:26.350 \longrightarrow 00:47:28.180$ So that's it for me.
- $1032\ 00:47:28.180 --> 00:47:30.140\ I$ just want to thank some of my faculty crowd,
- $1033\ 00:47:30.140 \longrightarrow 00:47:33.050$ collaboratives, Quefeng Li, Junier Oliva
- 103400:47:33.050 --> 00:47:36.750 from UNC computer science, Jen Jen Yeah
- 1035 00:47:36.750 --> 00:47:40.010 from surgical oncology at Lineberger,

1036 00:47:40.010 --> 00:47:42.550 Joe Ibrahim as well, UNC biostatistics,

 $1037\ 00{:}47{:}42.550 \dashrightarrow 00{:}47{:}45.100$ and also my students, Hilary, who's done a lot of work

1038 00:47:45.100 --> 00:47:47.821 in this area, and also David Lim, who's doing

 $1039\ 00:47:47.821 --> 00:47:49.840$ some of the deep learning work in our group.

 $1040\ 00:47:49.840 \longrightarrow 00:47:51.283$ And that's it, thank you.

1041~00:47:57.800 --> 00:47:59.290 < v Robert>So does anybody here have</v>

 $1042\ 00:47:59.290 \longrightarrow 00:48:01.830$ any questions for the professor?

 $1043\ 00{:}48{:}09.063 \dashrightarrow 00{:}48{:}14.063$ Or any body on the, on Zoom, any questions you want to ask?

1044 00:48:25.900 --> 00:48:27.383 <-> It looks like I'm off the hook.</v>

 $1045~00{:}48{:}28.750 --> 00{:}48{:}30.240 <\!v$ Robert>All right, well, thank you so much.
</v>

 $1046\ 00:48:30.240 --> 00:48:31.813$ Really appreciated your talk.

 $1047\ 00:48:33.390 \longrightarrow 00:48:34.490$ Have a good afternoon.