WEBVTT

- 1.00:00:00.000 --> 00:00:02.057 < v Wayne>We introduce Dr. Alex Kaizer. </v>
- $2~00:00:04.350 \longrightarrow 00:00:06.976$ Dr. Kaizer is an assistant professor
- $3\ 00:00:06.976 \longrightarrow 00:00:10.380$ in the Department of Biostatistics and Informatics,
- $4\ 00:00:10.380 \longrightarrow 00:00:11.640$ and he's a faculty member
- $5.00:00:11.640 \longrightarrow 00:00:14.280$ in the Center for Innovative Design and Analysis
- $6~00:00:14.280 \dashrightarrow 00:00:18.780$ at the University of Colorado Medical Campus.
- 7 00:00:18.780 --> 00:00:21.180 He's passionate about translational research
- $8\ 00:00:21.180 \longrightarrow 00:00:23.817$ and the development of normal
- 9 00:00:23.817 --> 00:00:25.260 and at clinical trial designs
- $10\ 00:00:25.260 \longrightarrow 00:00:26.093$ that the more efficient that they
- $11\ 00:00:27.458 \longrightarrow 00:00:30.570$ and factually utilize available resources
- $12\ 00:00:30.570 \longrightarrow 00:00:33.660$ including past trails and past studies.
- $13\ 00:00:33.660 --> 00:00:36.610$ And Dr. Kaizer strives to translate
- $14\,00:00:36.610 \longrightarrow 00:00:40.530$ (indistinct) topics into understandable material
- $15\ 00:00:40.530 \longrightarrow 00:00:42.240$ that is more than just a mask
- 16 00:00:42.240 --> 00:00:43.740 and something we can appropriate
- $17\ 00:00:43.740 --> 00:00:46.350$ and utilize in our daily lives and research.
- $18\ 00:00:46.350 --> 00:00:49.593$ Now let's welcome Dr. Kaizer.
- $19\ 00:00:52.740 --> 00:00:53.573 < v Alex>Thank you Wayne.</v>$
- $20~00{:}00{:}53.573 \to 00{:}00{:}57.000$ So a pologies for my own technical difficulties today,
- 21 00:00:57.000 --> 00:00:58.650 but I'm going to be presenting on
- $22\ 00:00:58.650 \longrightarrow 00:01:01.620$ this idea of a sequential basket trial design
- $23\ 00:01:01.620 \dashrightarrow 00:01:03.600$ based on multi-source exchangeability
- 24 00:01:03.600 --> 00:01:05.640 with predictive probability monitoring.
- $25\ 00:01:05.640 \longrightarrow 00:01:08.790$ And that is admittedly quite the mouthful
- $26~00:01:08.790 \longrightarrow 00:01:10.830$ and I'm hoping throughout this presentation
- $27\ 00{:}01{:}10.830 \dashrightarrow 00{:}01{:}13.020$ to break down each of these concepts
- $28~00{:}01{:}13.020 \dashrightarrow 00{:}01{:}16.500$ and ideas building upon them sort of until we have this

- $29~00:01:16.500 \longrightarrow 00:01:19.383$ cumulative effect that represents this title today.
- 30 00:01:20.760 --> 00:01:22.830 Before jumping into everything though,
- $31~00:01:22.830 \longrightarrow 00:01:24.510~\mathrm{I}$ do wanna make a few acknowledgements.
- $32\ 00:01:24.510 \longrightarrow 00:01:26.310$ This paper was actually published
- 33 00:01:26.310 \rightarrow 00:01:28.260 just at the end of this past summer in PLOS ONE,
- $34\ 00:01:28.260 \dashrightarrow 00:01:31.140$ and so if you're interested in more of the technical details
- $35~00:01:31.140 \longrightarrow 00:01:32.760$ or additional simulation examples
- 36 00:01:32.760 --> 00:01:34.860 and things beyond what I present today,
- $37\ 00:01:34.860 \longrightarrow 00:01:36.000$ I include this paper here
- $38\ 00{:}01{:}36.000 \dashrightarrow 00{:}01{:}38.520$ and we'll also have it up again at the very end of my talk
- $39\ 00:01:38.520 \longrightarrow 00:01:40.320$ just for reference.
- $40\ 00:01:40.320 --> 00:01:42.420$ Also acknowledgement to Dr. Nan Chen
- 41 00:01:42.420 --> 00:01:44.190 who helped with some of the initial coding
- $42\ 00:01:44.190 --> 00:01:46.773$ of some of these methods and approaches.
- $43\ 00:01:49.800 \longrightarrow 00:01:52.470$ So to set the context for my seminar today,
- $44\ 00:01:52.470 \longrightarrow 00:01:54.030$ I want to think here about
- $45\ 00:01:54.030 \longrightarrow 00:01:56.040$ this move towards precision medicine generally,
- $46\ 00:01:56.040 --> 00:01:58.920$ but especially in the context of oncology.
- $47\ 00{:}01{:}58.920 {\:{\mbox{--}}\!>}\ 00{:}02{:}01.920$ And so within oncology, like many other disciplines,
- $48\ 00:02:01.920 \longrightarrow 00:02:03.390$ when we design research studies,
- $49\ 00:02:03.390 \longrightarrow 00:02:05.460$ we often design these for a particular,
- $50\ 00:02:05.460 --> 00:02:06.870$ what we might call a histology
- 51 00:02:06.870 --> 00:02:09.360 or an indication or a disease.
- 52 00:02:09.360 --> 00:02:10.507 So for example, we might say,
- $53\ 00:02:10.507 --> 00:02:12.600$ "Well, I have a treatment or intervention
- 54 00:02:12.600 --> 00:02:15.480 which I hope or think will work in lung cancer,
- 55~00:02:15.480 --> 00:02:17.580 therefore I'm going to design

- $56\ 00:02:17.580 --> 00:02:20.700$ and enroll in the study for lung cancer."
- 57 00:02:20.700 --> 00:02:23.850 Now this represents a very standard way
- $58\ 00:02:23.850 \longrightarrow 00:02:25.920$ that we do clinical trial design where we try to
- 59 00:02:25.920 --> 00:02:27.330 really rigorously define
- $60\ 00:02:27.330 \longrightarrow 00:02:30.960$ and limitedly define what our scope is.
- 61 00:02:30.960 --> 00:02:31.920 Now within oncology,
- $62\ 00:02:31.920 \longrightarrow 00:02:34.140$ we've had some exciting scientific developments
- $63\ 00:02:34.140 \longrightarrow 00:02:36.030$ over the past few decades.
- $64~00:02:36.030 \longrightarrow 00:02:38.070$ So now instead of seeing cancer as just
- $65\ 00:02:38.070 --> 00:02:40.410$ based on the site like you have a lung cancer
- 66 00:02:40.410 --> 00:02:41.970 or a prostate cancer,
- $67\ 00:02:41.970 --> 00:02:44.850$ we actually have identified that we can partition cancers
- $68\ 00:02:44.850 \longrightarrow 00:02:47.850$ into many small molecular subtypes.
- 69 00:02:47.850 --> 00:02:49.350 And further, we've actually been able to
- $70~00:02:49.350 \dashrightarrow 00:02:52.050$ leverage this information by being able to say that
- $71\ 00:02:52.050 --> 00:02:53.940$ what we thought of as a holistic lung cancer
- 72 00:02:53.940 --> 00:02:57.000 isn't just one type of disease,
- $73~00:02:57.000 \dashrightarrow 00:02:58.770$ we can actually develop the rapies that we hope to
- 74~00:02:58.770 --> 00:03:02.160 target some of these differences in genetic alterations.
- 75~00:03:02.160 --> 00:03:04.620 And this really gets to that idea of precision medicine that
- $76~00:03:04.620 \longrightarrow 00:03:06.900$ instead of throwing a treatment at someone
- $77\ 00:03:06.900 \longrightarrow 00:03:08.070$ where we think it should work
- 78 00:03:08.070 --> 00:03:10.350 or it has worked in some people on average,
- $79\ 00:03:10.350 \longrightarrow 00:03:12.570$ hopefully we can really target the intervention
- $80\ 00:03:12.570 \longrightarrow 00:03:14.400$ based off of some signal
- $81\ 00{:}03{:}14.400 \dashrightarrow 00{:}03{:}17.310$ or some indication like a biomarker or a genotype

- $82\ 00:03:17.310$ --> 00:03:20.370 that we actually hope could respond more ideally
- 83 $00:03:20.370 \longrightarrow 00:03:22.200$ to that intervention.
- $84\ 00:03:22.200 \longrightarrow 00:03:25.500$ Now what's really interesting about this as well
- $85\ 00{:}03{:}25.500 \dashrightarrow 00{:}03{:}27.840$ is that there could be a potential for heterogeneity
- $86\ 00:03:27.840 \longrightarrow 00:03:30.420$ in this treatment benefit by indication.
- $87\ 00:03:30.420 \dashrightarrow 00:03:32.580$ And what I mean by that is once we've identified
- $88\ 00:03:32.580 \longrightarrow 00:03:34.740$ that there's these different genetic alterations,
- $89\ 00:03:34.740 \longrightarrow 00:03:37.230$ we've actually discovered that these alterations
- 90 00:03:37.230 --> 00:03:40.770 aren't necessarily unique to one site of cancer.
- 91 00:03:40.770 --> 00:03:43.080 For example, we may identify a genetic alteration
- $92\ 00:03:43.080$ --> 00:03:45.600 in the lung that also is present in the prostate, liver.
- $93\ 00:03:45.600 --> 00:03:49.170$ and kidney in some of those types of cancer.
- $94\ 00:03:49.170 \longrightarrow 00:03:50.490$ Now the challenge here though is that
- $95\ 00:03:50.490 \dashrightarrow 00:03:53.340$ even though we have the same driver hypothetically
- $96\ 00:03:53.340 \longrightarrow 00:03:56.280$ based on our clinical or scientific hypothesis
- $97\ 00{:}03{:}56.280 \dashrightarrow 00{:}03{:}58.560$ of that potential benefit for a treatment we've designed
- $98\ 00:03:58.560 \longrightarrow 00:03:59.790$ to address it,
- $99\ 00:03:59.790 --> 00:04:01.440$ there's still may be important differences
- $100\ 00:04:01.440 \longrightarrow 00:04:02.340$ that we don't know about
- $101\ 00:04:02.340 \longrightarrow 00:04:04.980$ or have yet to account for based off of each site.
- $102\ 00{:}04{:}04.980 \dashrightarrow 00{:}04{:}07.110$ So what may have worked actually really well in the lung
- 103 00:04:07.110 --> 00:04:09.030 for one given mutation,
- $104\ 00:04:09.030 \longrightarrow 00:04:12.090$ even for that same mutation, let's say present in the liver,
- $105\ 00:04:12.090 \longrightarrow 00:04:13.170$ may not work as well.

- $106\ 00:04:13.170$ --> 00:04:15.990 And that's that idea of heterogeneity and treatment benefit.
- 107 00:04:15.990 --> 00:04:18.270 That we can have different levels of response
- $108\ 00:04:18.270 \longrightarrow 00:04:20.793$ across different sites or groups of individuals.
- 109 00:04:22.950 --> 00:04:24.270 Now the cool thing I think here
- $110\ 00{:}04{:}24.270$ --> $00{:}04{:}26.880$ from the statistical perspective is that the scientific
- $111\ 00:04:26.880 \longrightarrow 00:04:27.990$ and clinical advancements
- $112\ 00:04:27.990 \longrightarrow 00:04:30.810$ have also led to the revolution and statistical
- $113\ 00:04:30.810 \longrightarrow 00:04:34.170$ and clinical design challenges and approaches.
- $114\ 00{:}04{:}34.170 \dashrightarrow 00{:}04{:}36.390$ And of course that's the sweet spot that I work at.
- 115 00:04:36.390 --> 00:04:37.350 I know many of you
- $116\ 00{:}04{:}37.350 \dashrightarrow 00{:}04{:}38.760$ and especially students are training
- $117\ 00:04:38.760 \longrightarrow 00:04:40.140$ and studying to work in this area
- $118\ 00{:}04{:}40.140 \dashrightarrow 00{:}04{:}42.870$ to collaborate with scientific and clinical researchers
- $119\ 00:04:42.870 \longrightarrow 00:04:45.120$ and leaders to translate those results
- 120 00:04:45.120 --> 00:04:46.650 in statistically meaningful ways
- 121 00:04:46.650 --> 00:04:49.380 and to potentially design trials or studies
- $122\ 00{:}04{:}49.380 \dashrightarrow 00{:}04{:}52.830$ that really target these questions and hypotheses.
- 123 00:04:52.830 --> 00:04:55.950 Now specifically in this talk today,
- $124\ 00:04:55.950 \longrightarrow 00:04:57.720$ I'm going to focus on this idea of
- $125\ 00:04:57.720 --> 00:05:00.510$ a master protocol design or evolution.
- $126\ 00:05:00.510 \longrightarrow 00:05:02.130$ And these provide a flexible approach
- $127\ 00:05:02.130 \dashrightarrow 00:05:04.680$ to the design of trials with multiple indications,
- 128 00:05:04.680 --> 00:05:06.120 but they do have their own unique challenges
- $129\ 00{:}05{:}06.120 \dashrightarrow 00{:}05{:}08.820$ that I'm gonna highlight a few of here in a second.
- $130\ 00{:}05{:}08.820 \to 00{:}05{:}11.160$ But there are a variety of master protocols out there

- $131\ 00:05:11.160 --> 00:05:12.900$ in case you've heard some of these buzzwords.
- 132 00:05:12.900 --> 00:05:15.750 I'll be focusing on basket trials today,
- $133\ 00:05:15.750 --> 00:05:17.820$ but you may have also heard of things like umbrella trials
- $134\ 00:05:17.820 \longrightarrow 00:05:20.433$ or even more generally platform trial designs.
- $135\ 00:05:23.520 --> 00:05:25.687$ And so one example of what this looks like here is
- $136\ 00:05:25.687 \longrightarrow 00:05:28.320$ this is a graphic from a paper in the
- $137\ 00{:}05{:}28.320 \dashrightarrow 00{:}05{:}31.050$ New England Journal by Dr. Woodcock and La Vange,
- 138 00:05:31.050 --> 00:05:32.430 Dr. Woodcock being a clinician,
- 139 00:05:32.430 --> 00:05:34.590 and Dr. Lisa La Vange being a past president of
- 140 00:05:34.590 --> 00:05:36.870 The American Statistical Association,
- $141\ 00:05:36.870 --> 00:05:39.330$ where they actually tried to put to rest some of the
- $142\ 00{:}05{:}39.330 \dashrightarrow 00{:}05{:}42.450$ confusion surrounding some of these design types
- 143 00:05:42.450 --> 00:05:43.283 because it turns out,
- $144\ 00:05:43.283 \longrightarrow 00:05:46.200$ up until 2017 when we discussed these designs
- $145\ 00:05:46.200 \longrightarrow 00:05:48.180$ across even statistical communities
- $146\ 00:05:48.180 \longrightarrow 00:05:50.070$ and with clinical researchers,
- $147\ 00{:}05{:}50.070 \dashrightarrow 00{:}05{:}53.460$ we tend to use these terms fairly interchangeably
- $148\ 00:05:53.460 --> 00:05:54.810$ even though we are really getting at
- $149\ 00:05:54.810 \longrightarrow 00:05:57.120$ very different concepts.
- $150\ 00:05:57.120 \longrightarrow 00:05:58.020$ So for example,
- $151\ 00:05:58.020 --> 00:06:01.710$ in the top here we have this idea of an umbrella trial
- $152\ 00:06:01.710 --> 00:06:04.110$ and this is really the context of a single disease
- 153 00:06:04.110 --> 00:06:05.220 like lung cancer,
- $154\ 00:06:05.220 \longrightarrow 00:06:06.660$ but we actually then will screen for
- $155\ 00:06:06.660 \longrightarrow 00:06:07.770$ those genetic alterations

 $156\ 00:06:07.770 --> 00:06:09.810$ and have different the rapies that we're trying to

 $157\ 00:06:09.810 \longrightarrow 00:06:13.830$ target a different biomarker or genetic alteration for.

 $158\ 00:06:13.830 --> 00:06:16.500$ This contrasts to what we're focusing on today below

 $159\ 00:06:16.500 \longrightarrow 00:06:18.090$ of a basket trial,

 $160\ 00:06:18.090 \longrightarrow 00:06:20.400$ we actually have different diseases or indications,

 $161\ 00{:}06{:}20.400 \dashrightarrow 00{:}06{:}23.280$ but they share a common target or genetic alteration

 $162\ 00:06:23.280 \longrightarrow 00:06:24.870$ which we wish to target.

 $163\ 00:06:24.870 --> 00:06:26.430$ And in this sense we can think of it potentially

 $164\ 00:06:26.430 \longrightarrow 00:06:27.780$ as them sharing a basket

 $165\ 00{:}06{:}27.780 \longrightarrow 00{:}06{:}31.560$ or sharing a sort of that commonality there.

 $166\ 00:06:31.560 \dashrightarrow 00:06:35.400$ Now, this is a fairly broad general idea of these designs.

 $167\ 00:06:35.400 \longrightarrow 00:06:36.900$ And so I think for the sake of

 $168\ 00:06:36.900 \longrightarrow 00:06:38.040$ what we're gonna talk about today

 $169\ 00:06:38.040 \longrightarrow 00:06:39.870$ and some of the statistical considerations

 $170\ 00:06:39.870 \longrightarrow 00:06:42.030$ that can be helpful to do a bit of a

 $171\ 00:06:42.030 --> 00:06:45.690$ over simplification of what a design might look like here.

 $172\ 00:06:45.690 --> 00:06:47.970$ And so on the slide that I've presented,

 $173\ 00:06:47.970 --> 00:06:52.596$ I have this kind of naive graphic of actual baskets

 $174\ 00:06:52.596 \longrightarrow 00:06:54.150$ and we're going to assume that in each column

 $175\ 00:06:54.150 \longrightarrow 00:06:56.400$ we have a different indication or site of cancer

 $176\ 00:06:56.400 --> 00:06:58.920$ that has that common genetic alteration.

 $177\ 00:06:58.920 \longrightarrow 00:07:01.590$ So for example, basket one may represent the lung,

 $178\ 00:07:01.590 --> 00:07:04.740$ basket two may represent the liver and so on.

 $179\ 00:07:04.740 \longrightarrow 00:07:06.870$ Now when we're in the case of designing

 $180\ 00:07:06.870 \longrightarrow 00:07:08.520$ or the design stage of a study,

- $181\ 00:07:08.520 \longrightarrow 00:07:10.590$ we tend to make oversimplifying assumptions
- $182\ 00:07:10.590 \longrightarrow 00:07:13.380$ to address these potential calculations for
- 183 00:07:13.380 --> 00:07:14.730 power, sample size,
- $184\ 00{:}07{:}14.730 \dashrightarrow 00{:}07{:}16.560$ and quantities that we're usually interested in
- $185\ 00:07:16.560 \longrightarrow 00:07:17.493$ for study design.
- $186\ 00:07:18.600 \longrightarrow 00:07:19.830$ So here on this graph,
- $187\ 00:07:19.830 --> 00:07:21.720$ we are gonna make a assumption that
- $188\ 00:07:21.720 --> 00:07:25.230$ there's only two possible responses in this planning stage.
- $189\ 00:07:25.230 \longrightarrow 00:07:28.680$ One is that the baskets have no response or a null basket,
- $190\ 00:07:28.680 --> 00:07:31.890$ that's the blue colored solid baskets on the screen.
- $191\ 00:07:31.890 --> 00:07:34.710$ The other case would be a alternative response
- $192\ 00:07:34.710$ --> 00:07:37.440 where there is some hopeful benefit to the treatment
- $193\ 00:07:37.440 --> 00:07:40.800$ and those are the open orange colored baskets
- $194\ 00:07:40.800 \longrightarrow 00:07:42.930$ we see on the screen here.
- $195\ 00:07:42.930 \longrightarrow 00:07:46.080$ Now, one of the challenges I think with basket trial design
- 196 00:07:46.080 --> 00:07:48.120 that can be overlooked sometime,
- $197\ 00:07:48.120 \longrightarrow 00:07:49.260$ even in this design stage,
- 198 00:07:49.260 --> 00:07:50.790 is that for a standard two arm trial,
- $199\ 00:07:50.790 \longrightarrow 00:07:52.050$ we do have to make this assumption of,
- 200 00:07:52.050 --> 00:07:54.870 what is our null hypothesis or response?
- $201\ 00{:}07{:}54.870\ -->\ 00{:}07{:}57.420$ What's our alternative hypothesis or response?
- $202\ 00:07:57.420$ --> 00:08:00.150 We really only have to do that for one configuration
- $203\ 00:08:00.150 \longrightarrow 00:08:02.790$ or combination because we have two arms.
- 204 00:08:02.790 --> 00:08:05.070 In the case of a single arm basket trial here,
- $205\ 00:08:05.070 \longrightarrow 00:08:05.903$ we actually see that

- $206\ 00:08:05.903 --> 00:08:08.010$ just by having five baskets in a study
- $207\ 00{:}08{:}08.010$ --> $00{:}08{:}10.470$ and many actual trials that are implemented at
- 208 00:08:10.470 --> 00:08:12.060 far more baskets,
- 209 00:08:12.060 --> 00:08:14.040 we actually see a range of just six possible
- 210 00:08:14.040 --> 00:08:17.010 binary combinations of the basket works
- 211 00:08:17.010 --> 00:08:17.910 or it doesn't work,
- 212 00:08:17.910 --> 00:08:21.480 ranging from at the extremes a global null
- $213\ 00{:}08{:}21.480 \dashrightarrow 00{:}08{:}23.400$ where unfortunately the treatment does not work
- $214\ 00{:}08{:}23.400$ --> $00{:}08{:}26.400$ in any basket down to the sort of dream scenario
- $215\ 00:08:26.400 \longrightarrow 00:08:28.040$ where the basket is actually,
- $216\ 00:08:28.040 \longrightarrow 00:08:30.840$ or the drug actually works across all baskets.
- $217\ 00:08:30.840 \longrightarrow 00:08:33.840$ There is this homogenous actually response
- $218\ 00:08:33.840 \longrightarrow 00:08:38.013$ in a positive direction for the sort of clinical outcome.
- 219 00:08:39.030 --> 00:08:39.900 More realistically,
- 220 00:08:39.900 --> 00:08:41.550 we actually will probably encounter
- $221\ 00:08:41.550 --> 00:08:43.890$ something that we see falls in the middle here,
- 222 00:08:43.890 --> 00:08:45.780 scenarios two through five,
- $223\ 00:08:45.780 --> 00:08:47.640$ where there's some mixture of baskets
- $224\ 00:08:47.640 \longrightarrow 00:08:48.777$ that actually do show a response
- $225\ 00:08:48.777 \longrightarrow 00:08:51.360$ and some that for whatever reason we might not know yet,
- $226\ 00:08:51.360 \longrightarrow 00:08:52.767$ it just doesn't appear to have any effect
- $227\ 00:08:52.767 --> 00:08:55.050$ and is a null response.
- $228\ 00:08:55.050 \longrightarrow 00:08:56.310$ So this can make it challenging
- $229\ 00:08:56.310 \longrightarrow 00:08:57.720$ for some of the considerations of
- $230\ 00{:}08{:}57.720 \dashrightarrow 00{:}09{:}00.873$ what analysis strategy you plan to use in practice.
- 231 00:09:02.670 --> 00:09:05.340 And so to just, at a high level,
- 232 00:09:05.340 --> 00:09:06.960 highlight some of these challenges

- $233\ 00:09:06.960 \dashrightarrow 00:09:10.500$ before we jump into the methods for today's talk.
- 234 00:09:10.500 --> 00:09:12.780 In practice, each of these baskets within trial
- $235\ 00:09:12.780 \longrightarrow 00:09:14.340$ often have what we call a small
- $236\ 00:09:14.340$ --> 00:09:17.520 and or small sample size for each of those indications.
- 237 00:09:17.520 --> 00:09:18.353 It turns out
- $238\ 00:09:18.353 \longrightarrow 00:09:20.340$ once we actually have this idea of precision medicine
- $239\ 00:09:20.340 \longrightarrow 00:09:21.780$ and we can be fairly precise
- 240 00:09:21.780 --> 00:09:22.830 for who counts for a trial,
- 241 00:09:22.830 \rightarrow 00:09:25.650 we actually have a much smaller potential sample
- $242\ 00:09:25.650 \longrightarrow 00:09:27.420$ or population to enroll.
- $243\ 00{:}09{:}27.420 \dashrightarrow 00{:}09{:}29.190$ This means that even though we might have a treatment
- 244 00:09:29.190 --> 00:09:30.180 that works really well,
- $245\ 00{:}09{:}30.180 \dashrightarrow 00{:}09{:}32.640$ it can be challenging to find individuals who qualify
- $246\ 00:09:32.640 \longrightarrow 00:09:34.470$ or are eligible to enroll
- 247 00:09:34.470 --> 00:09:36.480 or they may have competing trials or demands
- $248\ 00:09:36.480 \longrightarrow 00:09:39.213$ for other studies or care to consider.
- $249\ 00:09:40.500 \longrightarrow 00:09:42.540$ As I've also alluded to earlier the challenge,
- $250\ 00:09:42.540 \longrightarrow 00:09:44.340$ we also have this potential for indication
- $251\ 00{:}09{:}44.340 \dashrightarrow 00{:}09{:}47.160$ or subgroup heterogeneity and that may be likely.
- $252\ 00:09:47.160 \longrightarrow 00:09:47.993$ In other words,
- $253\ 00:09:47.993 \longrightarrow 00:09:49.590$ we might not expect the same response
- $254\ 00:09:49.590 \longrightarrow 00:09:50.457$ across all those baskets.
- 255 00:09:50.457 --> 00:09:52.350 And that gets back to the previous graphic
- $256\ 00:09:52.350 \longrightarrow 00:09:53.220$ on that last slide
- $257\ 00{:}09{:}53.220 \dashrightarrow 00{:}09{:}55.680$ where we might have something like two null baskets

- $258\ 00:09:55.680 \longrightarrow 00:09:57.030$ and three alternative baskets.
- $259\ 00:09:57.030 --> 00:09:59.040$ And that can make it really challenging in the presence
- $260\ 00:09:59.040 \longrightarrow 00:10:01.530$ of a small n to determine how do we
- 261 00:10:01.530 --> 00:10:03.090 appropriately analyze that data
- $262\ 00{:}10{:}03.090 \dashrightarrow 00{:}10{:}05.970$ so we capture the potentially applications baskets
- $263\ 00:10:05.970 \longrightarrow 00:10:08.700$ and can move those forward so patients benefit
- $264\ 00:10:08.700 \longrightarrow 00:10:10.950$ while not carrying forward null baskets
- $265\ 00:10:10.950 \longrightarrow 00:10:13.593$ where there is no response for those patients.
- 266 00:10:15.780 --> 00:10:16.860 Statistically speaking,
- $267\ 00{:}10{:}16.860 \dashrightarrow 00{:}10{:}19.440$ we also have these ideas of operating characteristics
- 268 00:10:19.440 --> 00:10:20.670 and in the context of a trial,
- $269\ 00:10:20.670 \longrightarrow 00:10:22.410$ what we mean by that is things like power
- $270\ 00:10:22.410 \longrightarrow 00:10:23.670$ and type one error
- 271~00:10:23.670 --> 00:10:26.040 and I just have additional considerations with respect to
- 272 00:10:26.040 --> 00:10:27.840 how do we summarize these?
- $273\ 00{:}10{:}27.840 \dashrightarrow 00{:}10{:}30.540$ Do we summarize them within each basket or each column
- $274\ 00:10:30.540 --> 00:10:32.220$ on that graphic on the previous slide,
- $275\ 00{:}10{:}32.220 \dashrightarrow 00{:}10{:}34.230$ essentially treating it as a bunch of
- $276\ 00{:}10{:}34.230 \dashrightarrow 00{:}10{:}36.360$ standalone independent one arm trials
- 277 00:10:36.360 --> 00:10:39.960 just under one overall study design or idea?
- $278\ 00{:}10{:}39.960 {\:{\mbox{--}}\!>}\ 00{:}10{:}42.000$ Or do we try to account for the fact that we have
- $279\ 00:10:42.000 \longrightarrow 00:10:45.270$ five baskets enrolling like on the graphic before
- $280\ 00{:}10{:}45.270 \dashrightarrow 00{:}10{:}46.710$ and we might wanna consider something like a
- $281\ 00:10:46.710 --> 00:10:48.450$ family wise type one error rate
- $282\ 00{:}10{:}48.450 \dashrightarrow 00{:}10{:}51.510$ where any false positive would be a negative outcome

- 283 00:10:51.510 --> 00:10:53.460 if we're trying to correctly predict
- $284\ 00:10:53.460 \longrightarrow 00:10:55.113$ or identify associations?
- 285 00:10:56.820 --> 00:10:58.260 Now the focus of today's talk,
- $286\ 00:10:58.260 --> 00:11:00.360$ and I could talk about these other points
- 287 00:11:00.360 --> 00:11:01.980 till the cows come home,
- 288 00:11:01.980 --> 00:11:04.200 but I'm gonna focus today on
- 289 00:11:04.200 --> 00:11:05.790 depending on that research stage we're at,
- 290 00:11:05.790 --> 00:11:07.800 if it's a phase one, two or three trial,
- $291\ 00{:}11{:}07.800 \dashrightarrow 00{:}11{:}09.900$ we may wish to terminate early for some reason like
- 292 00:11:09.900 --> 00:11:11.610 efficacy or futility.
- 293 00:11:11.610 --> 00:11:13.080 And specifically for time today,
- $294~00:11:13.080 \longrightarrow 00:11:15.810$ I'm gonna focus on the idea of stopping for futility
- $295\ 00:11:15.810 \longrightarrow 00:11:17.610$ where we don't wanna keep enrolling baskets
- $296\ 00{:}11{:}17.610$ --> $00{:}11{:}20.400$ that are poorly performing both for ethical reasons.
- $297\ 00:11:20.400 \longrightarrow 00:11:21.420$ In other words,
- $298\ 00{:}11{:}21.420 --> 00{:}11{:}23.970$ patients may benefit from other trials or treatments
- $299\ 00{:}11{:}23.970 \dashrightarrow 00{:}11{:}25.680$ that are out there and we don't wanna subject them to
- $300\ 00:11:25.680 \longrightarrow 00:11:27.570$ treatments that have no benefit.
- $301\ 00{:}11{:}27.570 {\:{\circ}{\circ}{\circ}}>00{:}11{:}30.840$ But also from a resource consideration perspective.
- $302\ 00{:}11{:}30.840 \dashrightarrow 00{:}11{:}33.990$ You can imagine that running a study or trial is expensive
- 303~00:11:33.990 --> 00:11:35.580 and can be complicated.
- $304\ 00{:}11{:}35.580 \dashrightarrow 00{:}11{:}37.830$ And especially if we're doing something like a basket trial
- $305\ 00:11:37.830 \longrightarrow 00:11:40.410$ where we're having to enroll across multiple baskets,
- $306\ 00{:}11{:}40.410 \dashrightarrow 00{:}11{:}43.290$ it may be ideal to be able to drop baskets early on

- $307\ 00:11:43.290 \longrightarrow 00:11:44.400$ that don't show promise
- $308\ 00:11:44.400 --> 00:11:46.320$ so we can reallocate those resources to
- 309 00:11:46.320 --> 00:11:48.600 either different studies, research projects,
- $310~00{:}11{:}48.600 \rightarrow 00{:}11{:}52.353$ or trials that we're trying to implement or run.
- $311\ 00:11:54.810 \longrightarrow 00:11:56.760$ So the motivation for today's talk
- $312\ 00:11:56.760 --> 00:11:58.290$ building off of these ideas is that
- 313 00:11:58.290 --> 00:12:01.230 I want to demonstrate that a design that's very popular
- $314\ 00:12:01.230 \longrightarrow 00:12:03.720$ called Simon's two-stage design is
- 315 00:12:03.720 --> 00:12:05.400 generally speaking suboptimal
- $316\,00:12:05.400 --> 00:12:08.430$ compared to the multitude of alternative methods
- $317\ 00:12:08.430 \longrightarrow 00:12:10.410$ and designs that are out there.
- $318\ 00:12:10.410 \longrightarrow 00:12:12.420$ And then this is especially true in our context of
- 319 00:12:12.420 --> 00:12:14.640 a basket trial where within the single study
- $320\ 00:12:14.640 \longrightarrow 00:12:16.710$ we actually are simultaneously enrolling
- $321\ 00:12:16.710 \longrightarrow 00:12:20.130$ multiple one arm trials in our case today.
- $322\ 00:12:20.130 \longrightarrow 00:12:22.260$ Then the second point I'd like to highlight is
- $323\ 00{:}12{:}22.260$ --> $00{:}12{:}24.360$ we can identify when methods for sharing information
- $324\ 00{:}12{:}24.360 \dashrightarrow 00{:}12{:}27.090$ across baskets could be beneficial to further improve
- 325 00:12:27.090 --> 00:12:29.403 the efficiency of our clinical trials.
- 326 00:12:30.960 --> 00:12:31.800 And so to highlight this,
- 327~00:12:31.800 --> 00:12:33.900 I wanna first just build us through
- $328\ 00:12:33.900 \longrightarrow 00:12:35.850$ and sort of illustrate or introduce these designs
- $329\ 00:12:35.850 \longrightarrow 00:12:37.440$ and the general concepts behind them
- 330 00:12:37.440 --> 00:12:39.600 because I know if you don't work in this space
- $331\ 00:12:39.600 \longrightarrow 00:12:42.720$ it may be sort of just ideas vaguely.
- $332\ 00{:}12{:}42.720 \dashrightarrow 00{:}12{:}44.610$ So I wanna start with the Simon two-stage design,

- $333\ 00:12:44.610 \longrightarrow 00:12:47.970$ that comparator that people are commonly using.
- 334 00:12:47.970 --> 00:12:50.790 So Richard Simon, and this is back in 1989,
- $335\ 00{:}12{:}50.790 \dashrightarrow 00{:}12{:}53.550$ introduced what he called optimal two-stage designs
- $336\ 00:12:53.550 \longrightarrow 00:12:55.650$ for phase two clinical trials.
- $337\ 00:12:55.650 --> 00:12:57.150$ And this was specifically in the context
- $338\ 00{:}12{:}57.150 {\:\hbox{--}}{>}\ 00{:}12{:}59.490$ that we're focusing on today for a one sample trial
- $339\ 00:12:59.490 \longrightarrow 00:13:02.420$ to evaluate the success of a binary outcome.
- $340\ 00:13:02.420 \longrightarrow 00:13:05.100$ So for oncology we might think of this as a yes no outcome
- $341\ 00:13:05.100 --> 00:13:07.170$ for is there a reduction in tumor size
- 342 00:13:07.170 --> 00:13:11.193 or a survival to some predefined time point.
- $343\ 00{:}13{:}13.230 \dashrightarrow 00{:}13{:}16.350$ Now specifically what Dr. Simon was motivated by
- $344\ 00:13:16.350 \longrightarrow 00:13:17.760$ was the stage-two trials
- 345 00:13:17.760 --> 00:13:20.220 as it says in the title of his paper,
- 346 00:13:20.220 --> 00:13:21.510 and just to kind of
- 347 00:13:21.510 --> 00:13:23.400 give a common lay of the land for everyone,
- $348\ 00{:}13{:}23.400 \dashrightarrow 00{:}13{:}26.340$ the purpose generally speaking of a phase two trial
- $349\ 00:13:26.340 \longrightarrow 00:13:28.200$ is to identify if the intervention
- $350\ 00:13:28.200 \longrightarrow 00:13:29.670$ warrants further development
- $351\ 00:13:29.670 \longrightarrow 00:13:32.370$ while collecting additional safety data.
- 352 00:13:32.370 --> 00:13:33.300 Generally speaking,
- $353\ 00:13:33.300 \longrightarrow 00:13:34.980$ we will have already completed what we call
- $354\ 00{:}13{:}34.980 \dashrightarrow 00{:}13{:}37.980$ a phase one trial where we collect preliminary safety data
- $355\ 00:13:37.980 \longrightarrow 00:13:40.410$ to make sure that the drug is not toxic
- $356\ 00:13:40.410 --> 00:13:43.500$ or at least has expected side effects
- $357\ 00:13:43.500 \longrightarrow 00:13:45.090$ that we are willing to tolerate for that
- 358 00:13:45.090 --> 00:13:47.580 potential gain in efficacy.

- $359\ 00:13:47.580 \longrightarrow 00:13:49.627$ And then in phase two here we're actually trying to say,
- 360 00:13:49.627 --> 00:13:51.330 "You know, is there some benefit?
- 361 00:13:51.330 --> 00:13:53.250 Is it worth potentially moving this drug
- $362\ 00:13:53.250 \longrightarrow 00:13:54.420$ on either for approval
- $363~00{:}13{:}54.420 \dashrightarrow 00{:}13{:}56.940$ or some larger confirmatory study
- 364 00:13:56.940 --> 00:13:59.097 to identify if it truly works or doesn't?"
- $365\ 00:14:01.020 \longrightarrow 00:14:03.090$ Now the motivation for Dr. Simon is that
- $366\ 00:14:03.090 \longrightarrow 00:14:04.650$ we would like to terminate studies earlier,
- 367 00:14:04.650 --> 00:14:05.520 as I mentioned before,
- $368\ 00:14:05.520 \longrightarrow 00:14:07.800$ for both ethical and resource considerations
- $369\ 00:14:07.800 \longrightarrow 00:14:09.240$ that they appear futile.
- $370\ 00{:}14{:}09.240 \dashrightarrow 00{:}14{:}11.430$ In other words, it's not a great use of our resources
- $371\ 00:14:11.430 \longrightarrow 00:14:12.390$ and we should try in some
- $372\ 00:14:12.390 \longrightarrow 00:14:14.733$ rigorous statistical way to address this.
- 373 00:14:17.040 --> 00:14:19.860 If you do go back and look at Simon's 1989 paper
- 374 00:14:19.860 --> 00:14:20.880 or you just Google this
- $375\ 00{:}14{:}20.880 \dashrightarrow 00{:}14{:}22.470$ and there's various calculators that people have
- 376 00:14:22.470 --> 00:14:23.430 put out there,
- $377\ 00:14:23.430 \longrightarrow 00:14:25.590$ there are two flavors of this design that exist
- $378\ 00:14:25.590 \longrightarrow 00:14:27.210$ from this original paper.
- $379\ 00:14:27.210 \longrightarrow 00:14:28.410$ One is an optimal
- $380\ 00:14:28.410 --> 00:14:30.840$ and one is called a minimax design.
- 381 00:14:30.840 --> 00:14:31.920 Within clinical trials,
- $382\ 00:14:31.920 \longrightarrow 00:14:35.730$ once we introduce this idea of stopping early potentially
- $383\ 00:14:35.730 --> 00:14:38.700$ or have the chance to stop early based on our data,
- $384\ 00{:}14{:}38.700 \dashrightarrow 00{:}14{:}41.820$ we now have this idea that there's this expected sample size

- $385\ 00:14:41.820 \longrightarrow 00:14:43.830$ because we could enroll the entire sample size
- $386\ 00:14:43.830 \longrightarrow 00:14:47.370$ that we planned for or we could potentially stop early.
- $387\ 00{:}14{:}47.370 \dashrightarrow 00{:}14{:}49.320$ And since we could stop early or go the whole way
- $388\ 00:14:49.320 \longrightarrow 00:14:50.760$ and we don't know what our choice will be
- $389\ 00:14:50.760 \longrightarrow 00:14:53.220$ until we actually collect the data and do the study,
- $390\ 00:14:53.220 \longrightarrow 00:14:55.740$ we now have sample size of the random variable,
- $391\ 00{:}14{:}55.740 \dashrightarrow 00{:}14{:}57.690$ something that we can calculate an expectation
- $392\ 00:14:57.690 \longrightarrow 00:14:59.070$ or an average for.
- 393 00:14:59.070 --> 00:15:01.080 And so Simon's optimal design tries to
- $394\ 00:15:01.080 \longrightarrow 00:15:05.820$ minimize what that average sample size might be in theory.
- $395\ 00:15:05.820 \longrightarrow 00:15:08.190$ In contrast, the minimax design
- 396~00:15:08.190 --> 00:15:11.040 tries to minimize whatever that largest sample size would be
- $397\ 00:15:11.040 \longrightarrow 00:15:12.690$ if we didn't stop early.
- $398\ 00:15:12.690 \longrightarrow 00:15:13.650$ So if we kept enrolling
- $399\ 00:15:13.650 \longrightarrow 00:15:15.960$ and we never stopped at any of our interim looks,
- $400\ 00:15:15.960 --> 00:15:17.970$ how much data would we need to collect
- $401\ 00:15:17.970 --> 00:15:20.280$ until we choose a design that minimizes that
- $402\ 00:15:20.280 \longrightarrow 00:15:22.563$ at the expense of potentially stopping early?
- $403\ 00:15:24.930 \longrightarrow 00:15:26.820$ I think this is most helpful to see the
- $404\ 00:15:26.820 \longrightarrow 00:15:28.590$ sort of elegance of this design
- $405\ 00:15:28.590 \longrightarrow 00:15:30.060$ and why it's I think so popular
- $406\ 00:15:30.060 \longrightarrow 00:15:31.260$ by just introducing example
- $407\ 00:15:31.260 --> 00:15:33.390$ that will also motivate our simulations
- $408\ 00:15:33.390 \longrightarrow 00:15:35.610$ here that we're gonna talk about in a minute.
- 409 00:15:35.610 --> 00:15:36.960 We're gonna consider a study where

- $410\ 00:15:36.960 \longrightarrow 00:15:39.883$ the null response rate is 10%.
- 411 00:15:39.883 --> 00:15:41.730 And we're going to consider a target
- $412\ 00:15:41.730 \longrightarrow 00:15:43.800$ for an alternative response rate of 30%.
- $413\ 00:15:43.800 \longrightarrow 00:15:45.090$ So this isn't a situation where
- 414 00:15:45.090 --> 00:15:47.820 we're looking for necessarily a curative drug,
- $415\ 00{:}15{:}47.820 \dashrightarrow 00{:}15{:}49.380$ but something that does show what we think of
- $416\ 00:15:49.380 \longrightarrow 00:15:52.410$ as a clinically meaningful benefit from 10 to 30%,
- 417 00:15:52.410 --> 00:15:54.333 let's say survival or tumor response.
- 418 00:15:55.200 --> 00:15:57.480 Now if we have these two parameters
- $419\ 00{:}15{:}57.480 \dashrightarrow 00{:}16{:}00.180$ and we wanna do a Simon two-stage minimax design
- 420 00:16:00.180 --> 00:16:02.970 to minimize that maximum possible sample size
- $421\ 00:16:02.970 \longrightarrow 00:16:04.230$ we would enroll,
- $422\ 00:16:04.230 \longrightarrow 00:16:06.060$ we would have to also define
- $423\ 00:16:06.060 \longrightarrow 00:16:07.590$ the type one error rate or alpha
- 424 00:16:07.590 --> 00:16:09.600 that cancels a false positive.
- 425~00:16:09.600 --> 00:16:12.447 Here we're going to set 10% for this phase two design
- $426\ 00:16:12.447 --> 00:16:15.330$ and we also wish to target a 90% power
- $427~00{:}16{:}15.330 \rightarrow 00{:}16{:}19.530$ to detect that treatment of 30% if it truly exists.
- $428\ 00:16:19.530 \longrightarrow 00:16:21.660$ So we put all of this into our calculator
- $429\ 00{:}16{:}21.660 \dashrightarrow 00{:}16{:}24.900$ to Simon's framework and we turn that statistical crank.
- $430\ 00:16:24.900 \longrightarrow 00:16:25.980$ What we see is that
- 431 00:16:25.980 --> 00:16:28.710 it gives us this approach where in stage one
- 432 00:16:28.710 --> 00:16:30.780 we would enroll 16 participants
- $433\ 00{:}16{:}30.780 \dashrightarrow 00{:}16{:}33.600$ and we would terminate the trial or this study arm
- $434\ 00{:}16{:}33.600 {\:{\mbox{--}}\!>\:} 00{:}16{:}37.410$ for futility if one or fewer responses are observed.

- 435 00:16:37.410 --> 00:16:41.130 Now if we observe two or more responses,
- $436\ 00:16:41.130 \longrightarrow 00:16:42.570$ we would continue enrollment
- 437 00:16:42.570 --> 00:16:45.360 to the overall maximum sample size that we plan for
- $438\ 00:16:45.360 \longrightarrow 00:16:47.580$ of 25 in the second stage.
- $439\ 00:16:47.580 \longrightarrow 00:16:50.760$ And at this point if four or fewer responses are observed,
- $440\ 00:16:50.760 --> 00:16:53.220$ no further investigation is warranted
- $441\ 00:16:53.220 \longrightarrow 00:16:54.900$ or we can think of this as a situation where
- $442\ 00{:}16{:}54.900 \dashrightarrow 00{:}16{:}58.923$ our P value would be larger than our defined alpha 0.1.
- $443\ 00:16:59.970 \longrightarrow 00:17:02.730$ Now, the nice thing here is that it is quite simple.
- $444\ 00:17:02.730 --> 00:17:04.620$ In fact, after we trim that statistical crank
- $445\ 00:17:04.620 \longrightarrow 00:17:06.240$ and we have this decision rule,
- $446\ 00:17:06.240 --> 00:17:08.490$ you in theory don't even need a statistician
- $447\ 00:17:08.490 --> 00:17:10.380$ because you can count the number of responses
- $448\ 00:17:10.380 --> 00:17:12.240$ for your binary outcome on your hand
- $449\ 00:17:12.240 \longrightarrow 00:17:15.330$ and determine should I stop early, should I continue?
- 450 00:17:15.330 --> 00:17:16.260 And if I continue,
- $451\ 00:17:16.260 \longrightarrow 00:17:18.090$ do I have some benefit potentially
- $452\ 00:17:18.090 --> 00:17:20.610$ that says it's worth either doing a future study
- 453 00:17:20.610 --> 00:17:22.860 or I did a statistical test,
- $454~00{:}17{:}22.860 \dashrightarrow 00{:}17{:}25.110$ would find that the P value meets my threshold
- $455\ 00:17:25.110 \longrightarrow 00:17:26.823$ I set for significance.
- 456 00:17:29.310 --> 00:17:30.690 Now, of course,
- $457\ 00:17:30.690 \longrightarrow 00:17:32.617$ it wouldn't be a great talk if I stopped there and said.
- 458 00:17:32.617 --> 00:17:34.140 "You know, this is everything.
- 459 00:17:34.140 --> 00:17:35.760 It's perfect. There's nothing to change."
- $460\ 00:17:35.760 --> 00:17:37.350$ There are some potential limitations

- $461\ 00:17:37.350 \longrightarrow 00:17:39.270$ and of course some solutions I think
- $462\ 00:17:39.270 \longrightarrow 00:17:41.850$ that we could address in this talk.
- $463\ 00:17:41.850 \longrightarrow 00:17:43.020$ The first thing to note is that
- $464\ 00:17:43.020 \longrightarrow 00:17:45.750$ this is extremely restrictive in when it could terminate
- $465\ 00{:}17{:}45.750 --> 00{:}17{:}47.940$ and it may continue to the maximum sample size
- $466\ 00:17:47.940 \longrightarrow 00:17:49.980$ even if a null effect is present.
- 467 00:17:49.980 --> 00:17:51.840 And we're gonna see this come to fruition
- 468 00:17:51.840 --> 00:17:53.580 in the simulation studies,
- $469\ 00:17:53.580 \longrightarrow 00:17:55.380$ but it's worth noting here it only looks once.
- $470\ 00:17:55.380 \longrightarrow 00:17:57.630$ It's a two stage design.
- 471 00:17:57.630 --> 00:18:00.210 And depending on the criteria you plug in,
- $472\ 00:18:00.210 \longrightarrow 00:18:01.800$ it might not look for quite some time.
- 473 00:18:01.800 --> 00:18:04.920 16 out of 25 total participants enrolled
- 474 00:18:04.920 --> 00:18:07.440 is still a pretty large sample size
- $475\ 00:18:07.440 \longrightarrow 00:18:09.273$ relative to where we expect to be.
- $476\ 00:18:10.710 \longrightarrow 00:18:12.057$ One solution that we could look at
- 477 00:18:12.057 --> 00:18:13.890 and that I'm going to propose today
- $478\ 00:18:13.890 --> 00:18:15.960$ is that we could use Bayesian methods instead
- 479 00:18:15.960 --> 00:18:18.150 for more frequent interim monitoring.
- $480\ 00{:}18{:}18.150 \dashrightarrow 00{:}18{:}19.607$ And this could use quantities that we think of
- $481\ 00:18:19.607 \longrightarrow 00:18:23.280$ as the posterior or the predictive probabilities
- $482\ 00:18:23.280 \longrightarrow 00:18:24.243$ of our data.
- $483\ 00{:}18{:}25.830 \dashrightarrow 00{:}18{:}28.260$ Another limitation that we wish to address as well is that
- $484\ 00:18:28.260 \longrightarrow 00:18:29.820$ in designs like a basket trial
- $485\ 00:18:29.820 \longrightarrow 00:18:30.960$ that have multiple indications
- $486\ 00:18:30.960 \longrightarrow 00:18:34.560$ or multiple arms that have the same entry criteria,
- 487 00:18:34.560 --> 00:18:36.300 Simon's two-stage design is going to

- 488 00:18:36.300 --> 00:18:38.040 fail to take advantage of the potential
- $489\ 00:18:38.040 \longrightarrow 00:18:40.740$ what we call exchange ability across baskets.
- $490\ 00:18:40.740 \longrightarrow 00:18:44.550$ In other words, if baskets appear to have the same response,
- $491\ 00:18:44.550 \longrightarrow 00:18:45.900$ whether it's let's say that null
- 492 00:18:45.900 --> 00:18:47.850 or that alternative response,
- $493\ 00:18:47.850 \longrightarrow 00:18:49.230$ it would be great if we could
- $494~00:18:49.230 \longrightarrow 00:18:52.230$ informatively pull them together into meta subgroups
- $495\ 00:18:52.230 --> 00:18:53.790$ so we can increase the sample size
- $496~00{:}18{:}53.790 \mathrel{--}{>} 00{:}18{:}56.310$ and start to address that challenge of the small n
- $497\ 00:18:56.310 \longrightarrow 00:18:59.250$ that I mentioned earlier for these basket trial designs.
- $498\ 00{:}18{:}59.250 \dashrightarrow 00{:}19{:}02.280$ And specifically today we're going to examine the use of
- $499\ 00{:}19{:}02.280$ --> $00{:}19{:}04.740$ what we call multi-source exchangeability models
- $500~00:19:04.740 \dashrightarrow 00:19:07.950$ to share information across baskets when appropriate.
- $501~00:19:07.950 \dashrightarrow 00:19:10.170$ And I'll walk through a very high level sort of
- $502~00{:}19{:}10.170 \dashrightarrow 00{:}19{:}12.120$ conceptual idea of what these models
- $503\ 00:19:12.120 \longrightarrow 00:19:14.220$ and how they work and what they look like.
- 504 00:19:16.770 --> 00:19:17.700 Before we get into that though,
- $505~00:19:17.700 --> 00:19:20.247~\mathrm{I}$ wanna just briefly mention the idea of posterior
- 506 00:19:20.247 --> 00:19:21.600 and predictive probabilities
- $507\ 00:19:21.600 \longrightarrow 00:19:22.950$ and give some definitions here
- $508\ 00:19:22.950 --> 00:19:25.200$ so we can conceptually envision what we mean
- $509\ 00:19:25.200 \longrightarrow 00:19:26.850$ and especially if you haven't had the chance
- 510 00:19:26.850 --> 00:19:28.920 to work with a lot of patient methods,
- $511\ 00:19:28.920 \longrightarrow 00:19:30.720$ this can help give us an idea

- $512\ 00:19:30.720 \dashrightarrow 00:19:33.150$ of some of the analogs to maybe a frequent ist approach
- $513\ 00:19:33.150 \longrightarrow 00:19:34.260$ or what we're trying to do here
- $514\ 00:19:34.260 \longrightarrow 00:19:36.450$ that you may be familiar with.
- 515 00:19:36.450 --> 00:19:37.380 Now I will mention,
- $516~00:19:37.380 \longrightarrow 00:19:39.360$ I'm not the first person to propose looking at
- 517 00:19:39.360 --> 00:19:40.500 Bayesian interim stopping rules.
- $518\ 00:19:40.500 --> 00:19:43.170\ I$ have a couple citations here by Dmitrienko
- $519\ 00:19:43.170 --> 00:19:44.940$ and Wang and Saville et all
- $520\ 00:19:44.940 \dashrightarrow 00:19:46.860$ and they do a lot of extensive work in addition to
- 521 00:19:46.860 --> 00:19:48.930 hundreds of other papers considering
- 522 00:19:48.930 --> 00:19:51.300 Bayesian interim monitoring.
- $523~00:19:51.300 \dashrightarrow 00:19:53.160$ But specifically to motivate this
- 524~00:19:53.160 --> 00:19:55.590 we have these two concepts that commonly come up
- 525 00:19:55.590 --> 00:19:56.880 in Bayesian analysis,
- $526~00:19:56.880 \longrightarrow 00:20:00.870$ a posterior probability or a predictive probability.
- 527 00:20:00.870 --> 00:20:02.880 The posterior probability
- $528\ 00:20:02.880 \longrightarrow 00:20:05.340$ is very much analogous to kinda like a P value
- 529~00:20:05.340 --> 00:20:06.330 in a frequent significance.
- 530 00:20:06.330 --> 00:20:09.090 It says, "Based on the posterior distribution
- 531 00:20:09.090 --> 00:20:11.100 we arrive at through a Bayesian analysis,
- 532 00:20:11.100 --> 00:20:13.140 we're gonna calculate the probability
- $533~00{:}20{:}13.140 \dashrightarrow 00{:}20{:}15.480$ that our proportion exceeds the null response rate
- $534\ 00:20:15.480 \longrightarrow 00:20:16.313$ we wish to beat."
- 535 00:20:16.313 --> 00:20:17.617 So in our case, we're basically saying,
- $536\ 00:20:17.617 \longrightarrow 00:20:19.680$ "What's the probability based on our data
- $537~00{:}20{:}19.680 \dashrightarrow 00{:}20{:}23.577$ and a prior we've given that the response is 10% or higher."
- $538\ 00:20:24.510 --> 00:20:25.770$ So this covers a lot of ground

- $539~00{:}20{:}25.770 --> 00{:}20{:}29.160$ 'cause anything you know from 10.1 up to 100%
- $540~00{:}20{:}29.160$ --> $00{:}20{:}32.160$ would meet this criteria being better than 10%.
- 541 00:20:32.160 --> 00:20:34.080 But it does quantify,
- 542 00:20:34.080 --> 00:20:36.720 based on the evidence we've observed so far,
- $543\ 00:20:36.720 \longrightarrow 00:20:40.020$ how the data suggests the
- 544 00:20:40.020 --> 00:20:41.760 benefit may be with respect to that null.
- $545\ 00:20:41.760 \longrightarrow 00:20:43.700$ So in the case of let's say
- $546\ 00{:}20{:}43.700 \dashrightarrow 00{:}20{:}46.860$ an interim look for futility at the data, we could say,
- $547~00{:}20{:}46.860 \dashrightarrow 00{:}20{:}50.520$ if we just use Simon's two-stage design as our motivating
- 548 00:20:50.520 --> 00:20:52.837 ground to consider, we might say,
- 549 00:20:52.837 --> 00:20:55.320 "Okay, we have 16 people so far,
- $550~00{:}20{:}55.320 \dashrightarrow 00{:}20{:}57.660$ what's the probability based on these 16 people
- 551 00:20:57.660 --> 00:20:58.710 that I could actually say
- 552 00:20:58.710 --> 00:21:00.360 there's no chance or limited chance
- $553\ 00:21:00.360 --> 00:21:02.700$ I'm going to detect something in the trial here
- 554 00:21:02.700 --> 00:21:04.830 based on the data I've seen so far?"
- $555~00{:}21{:}04.830 --> 00{:}21{:}06.540$ Now the challenge here is that
- $556\ 00:21:06.540 \longrightarrow 00:21:09.180$ it is based on off the data we've seen so far
- $557\ 00:21:09.180$ --> 00:21:12.030 and it doesn't take into account the fact that we still have
- $558\ 00:21:12.030 \longrightarrow 00:21:14.820$ another nine potential participants to enroll
- $559\ 00:21:14.820 \longrightarrow 00:21:18.090$ to get to that maximum sample size of 25.
- $560\ 00:21:18.090 --> 00:21:19.560$ That's where this idea of what we call a
- $561\ 00:21:19.560 --> 00:21:21.990$ predictive probability comes in.
- $562~00:21:21.990 \dashrightarrow 00:21:24.090$ We're considering our accumulated data
- $563\ 00:21:24.090 \longrightarrow 00:21:27.120$ and the priors we've specified in our Bayesian context,
- $564\ 00:21:27.120 \longrightarrow 00:21:29.790$ it's the probability that we will have observed

- $565\ 00:21:29.790 --> 00:21:32.400$ a significant result if we've met
- $566~00{:}21{:}32.400 \dashrightarrow 00{:}21{:}34.550$ and enrolled up to our maximum sample size.
- $567~00{:}21{:}35.550 \dashrightarrow 00{:}21{:}37.710$ In other words, I think it's a very natural place to be
- $568\ 00:21:37.710 \longrightarrow 00:21:38.610$ for interim monitoring
- $569\ 00:21:38.610 --> 00:21:40.740$ because it says based on the data I've seen so far,
- 570 00:21:40.740 --> 00:21:42.810 i.e the posterior probability,
- $571~00{:}21{:}42.810 --> 00{:}21{:}46.200$ if I use that to help identify what are likely futures
- 572 00:21:46.200 --> 00:21:48.163 to observe or likely sample sizes
- $573\ 00:21:48.163 \longrightarrow 00:21:51.450\ I$ will continue enrolling to get to that maximum of 25,
- 574 00:21:51.450 --> 00:21:53.130 what's the probability at the end of the day
- 575 00:21:53.130 --> 00:21:55.560 when I do hit that sample size of 25,
- 576 00:21:55.560 --> 00:21:58.290 I will have a significant conclusion?
- 577 00:21:58.290 --> 00:22:00.330 And if it's a really low predictive probability,
- 578~00:22:00.330 --> 00:22:02.070 if I say there's only a 5% chance
- 579 00:22:02.070 --> 00:22:04.140 of you actually declaring significance if you
- 580 00:22:04.140 --> 00:22:05.970 keep enrolling participants,
- $581~00{:}22{:}05.970 \dashrightarrow 00{:}22{:}08.280$ that can be really informative both statistically
- 582 00:22:08.280 --> 00:22:10.200 and for clinical partners to say
- $583~00:22:10.200 \longrightarrow 00:22:13.380$ it doesn't seem very likely that we're gonna hit our target.
- 584 00:22:13.380 --> 00:22:14.700 That being said,
- $585~00{:}22{:}14.700 \dashrightarrow 00{:}22{:}17.310$ a lot of people are very happy to continue trials going
- 586 00:22:17.310 --> 00:22:19.080 with low chances or low probability
- 587 00:22:19.080 --> 00:22:21.030 because you're saying there's still a chance
- 588 00:22:21.030 --> 00:22:23.010 I may detect something that could be
- 589 00:22:23.010 --> 00:22:25.170 significant enough worth.

- $590\ 00:22:25.170 \longrightarrow 00:22:27.600$ So we'll see that across a range of these thresholds,
- $591\ 00:22:27.600 \longrightarrow 00:22:29.883$ the performance of these models may change.
- 592 00:22:32.040 --> 00:22:34.410 Now this brings us to a brief recap
- $593\ 00:22:34.410 \longrightarrow 00:22:35.400$ of sort of our motivation.
- 594 00:22:35.400 --> 00:22:36.540 I just spent a few minutes
- 595~00:22:36.540 --> 00:22:38.970 introducing that popular Simon two-stage design,
- $596\ 00:22:38.970 \longrightarrow 00:22:39.900$ the idea behind it,
- 597 00:22:39.900 --> 00:22:41.910 what it might look like in practice,
- 598~00:22:41.910 --> 00:22:45.060 as well as some alternatives with the Bayesian flare.
- $599\ 00:22:45.060 --> 00:22:47.010$ The next part I wanna briefly address is that
- $600\ 00:22:47.010 --> 00:22:49.620$ we can also now look at this idea
- $601\ 00:22:49.620 --> 00:22:52.410$ of sharing information across baskets
- 602 00:22:52.410 --> 00:22:54.090 to further improve that trial efficiency
- $603\ 00:22:54.090 --> 00:22:56.490$ 'cause so far both Simon's design
- $604\ 00{:}22{:}56.490 {\: -->}\ 00{:}22{:}59.130$ and the just using a posterior predictive probability
- $605~00{:}22{:}59.130 \dashrightarrow 00{:}23{:}01.980$ for an interim monitoring will still treat each basket
- $606\ 00:23:01.980 \longrightarrow 00:23:04.203$ as its own little one arm trial.
- $607\ 00{:}23{:}07.020$ --> $00{:}23{:}09.780$ Now specifically today I'm gonna focus on this idea
- $608\ 00{:}23{:}09.780 \dashrightarrow 00{:}23{:}13.433$ we call multi-source exchangeability models or MEMs.
- $609\ 00:23:13.433 \longrightarrow 00:23:15.450$ This is a general Bayesian framework
- $610\ 00{:}23{:}15.450 {\: \hbox{--}}{>}\ 00{:}23{:}18.060$ to enable the incorporation of independent sources
- $611\ 00:23:18.060 \longrightarrow 00:23:20.220$ of supplemental information
- $612\ 00:23:20.220 \longrightarrow 00:23:22.140$ and its original work that I developed
- $613\ 00{:}23{:}22.140 \dashrightarrow 00{:}23{:}25.170$ during my dissertation at the University of Minnesota.
- $614\ 00:23:25.170 \longrightarrow 00:23:26.003$ In this case,

- $615\ 00:23:26.003 \longrightarrow 00:23:27.450$ the amount of borrowing is determined by
- 616 00:23:27.450 --> 00:23:29.370 the exchange ability of our data,
- $617\ 00:23:29.370 \longrightarrow 00:23:30.600$ which in our context is really,
- 618 00:23:30.600 --> 00:23:33.000 how equivalent are the response rates?
- $619\ 00:23:33.000 \longrightarrow 00:23:35.490$ If two baskets have the exact same response rate,
- $620\ 00:23:35.490 \longrightarrow 00:23:37.920$ we may think that there's a higher probability
- 621 00:23:37.920 --> 00:23:39.780 that the true underlying population
- $622\ 00{:}23{:}39.780 \dashrightarrow 00{:}23{:}41.880$ we are trying to estimate are truly exchangeable.
- $623\ 00:23:41.880 \longrightarrow 00:23:46.140$ We wish to combine that data as much as we possibly can.
- 624 00:23:46.140 --> 00:23:48.360 First is if again we see something that is like a
- $625\ 00:23:48.360 \longrightarrow 00:23:50.190\ 10\%$ response rate for one basket
- $626\ 00:23:50.190 \longrightarrow 00:23:52.800$ and a 30% response rate for another basket,
- $627~00{:}23{:}52.800 \dashrightarrow 00{:}23{:}55.110$ we likely don't want to combine that data because
- $628\ 00:23:55.110 \longrightarrow 00:23:57.360$ those are not very equivalent response rates.
- 629 00:23:57.360 --> 00:23:59.160 In fact, we seem to have identified
- $630\ 00:23:59.160 \longrightarrow 00:24:00.270$ two different subgroups
- $631\ 00:24:00.270 --> 00:24:03.393$ and performances in those two baskets.
- $632\ 00:24:04.380 \longrightarrow 00:24:06.810$ One of the advantages of MEMs relative to
- $633\ 00:24:06.810$ --> 00:24:09.210 a host of other statistical methods that are out there
- $634\ 00{:}24{:}09.210 --> 00{:}24{:}12.150$ that include things like power priors, commensurate priors,
- 635 00:24:12.150 --> 00:24:14.610 meta analytic priors, and so forth,
- $636\ 00:24:14.610 \longrightarrow 00:24:16.050$ is that we've been able to demonstrate that
- $637\ 00:24:16.050 \longrightarrow 00:24:18.360$ in their most basic iteration without
- $638\ 00:24:18.360 \longrightarrow 00:24:20.310$ any extra bells or whistles,
- $639\ 00{:}24{:}20.310$ --> $00{:}24{:}23.130$ MEMs are able to actually account for this heterogeneity

- $640\ 00:24:23.130 \longrightarrow 00:24:25.650$ across different potential response rates
- $641\ 00{:}24{:}25.650$ --> $00{:}24{:}28.950$ and appropriately down weight non-changeable sources.
- 642 00:24:28.950 --> 00:24:30.390 Whereas we show through simulation
- $643\ 00{:}24{:}30.390 \dashrightarrow 00{:}24{:}33.300$ and earlier work some of these other methods without
- $644\ 00:24:33.300 \longrightarrow 00:24:35.250$ newer advancements to them
- $645~00{:}24{:}35.250 \dashrightarrow 00{:}24{:}37.560$ actually either naively pull everything together
- $646\ 00:24:37.560 \longrightarrow 00:24:40.560$ even if there's non-changeable groups
- 647 00:24:40.560 --> 00:24:43.140 or they're afraid of the sort of presence of
- $648\ 00:24:43.140 \longrightarrow 00:24:45.120$ non-change ability and if anything seems amiss,
- $649\ 00:24:45.120 --> 00:24:48.240$ they quickly go to an independence analysis
- $650~00:24:48.240 \longrightarrow 00:24:50.700$ that doesn't leverage this potential sharing
- $651\ 00{:}24{:}50.700 \dashrightarrow 00{:}24{:}54.753$ of information across meta subgroups that are exchangeable.
- $652~00{:}24{:}56.460 \dashrightarrow 00{:}24{:}58.530$ Now again, I don't wanna get too much into the weeds
- $653\ 00:24:58.530 \longrightarrow 00:24:59.667$ of the math behind the MEMs,
- $654\ 00{:}24{:}59.667 \dashrightarrow 00{:}25{:}02.250$ but I will have a few formulas in a couple slides
- 655 00:25:02.250 --> 00:25:03.180 but I do think it's helpful to
- 656 00:25:03.180 --> 00:25:05.490 conceptualize it with graphics.
- $657~00{:}25{:}05.490 \dashrightarrow 00{:}25{:}08.050$ And so here I just want to illustrate a very simplified case
- $658\ 00{:}25{:}08.050 \dashrightarrow 00{:}25{:}11.160$ where we're gonna assume that we have a three basket trial
- $659~00{:}25{:}11.160 \dashrightarrow 00{:}25{:}13.830$ and for the sake of doing an analysis with MEMs,
- $660\ 00:25:13.830 \longrightarrow 00:25:15.720\ I$ think it's helpful to also think of it as
- $661\ 00:25:15.720 \longrightarrow 00:25:18.090$ we're looking at the perspective of the analysis
- $662\ 00:25:18.090 \longrightarrow 00:25:20.400$ from one particular basket.

- $663~00{:}25{:}20.400 \dashrightarrow 00{:}25{:}23.580$ So here on this slide here we see that we have this
- $664\ 00:25:23.580 \longrightarrow 00:25:25.140$ theta P circle in the middle
- $665~00{:}25{:}25.140 {\:{\mbox{--}}\!>\:} 00{:}25{:}27.540$ and that's the parameter or parameters of interest
- $666\ 00:25:27.540 \longrightarrow 00:25:29.340$ we wish to estimate.
- $667\ 00:25:29.340 \longrightarrow 00:25:30.750$ In our case, that would be that
- $668\ 00:25:30.750 \longrightarrow 00:25:32.793$ binary outcome in each basket.
- $669\ 00{:}25{:}33.630 {\:\hbox{--}}{>}\ 00{:}25{:}37.110$ Now, for this graphic we're using each of these circles here
- $670\ 00:25:37.110 \longrightarrow 00:25:39.690$ to represent a different data source.
- 671 00:25:39.690 --> 00:25:42.270 We're gonna say Y sub P is that primary basket
- 672 00:25:42.270 --> 00:25:43.860 that we're interested in or the perspective
- $673\ 00:25:43.860 \longrightarrow 00:25:45.630$ we're looking at for this example
- $674\ 00:25:45.630 \longrightarrow 00:25:47.550$ and Y sub one and Y sub two
- $675\ 00{:}25{:}47.550 \dashrightarrow 00{:}25{:}50.940$ are two of the other baskets enrolled within the trial.
- $676\ 00:25:50.940 \longrightarrow 00:25:52.500$ Now a standard analysis
- $677\ 00{:}25{:}52.500 \dashrightarrow 00{:}25{:}55.440$ without any information sharing across baskets
- $678~00{:}25{:}55.440 \dashrightarrow 00{:}25{:}59.550$ would only have a data pooled from the observed data.
- 679 00:25:59.550 --> 00:26:01.380 I mean this is sort of the unexciting
- 680 00:26:01.380 --> 00:26:02.640 or unsurprising analysis
- $681~00{:}26{:}02.640 {\:\hbox{--}}{>}~00{:}26{:}04.980$ where we basically are analyzing the data we have
- $682\ 00{:}26{:}04.980 \dashrightarrow 00{:}26{:}08.253$ for the one basket that actually represents that group.
- 683 00:26:09.630 --> 00:26:11.400 However, we could imagine if we wish
- $684\ 00:26:11.400 --> 00:26:13.830$ to pool together data from these other sources,
- $685\ 00{:}26{:}13.830 \dashrightarrow 00{:}26{:}16.530$ we have different ways we could add arrows to this figure

 $686\ 00{:}26{:}16.530 \dashrightarrow 00{:}26{:}19.803$ to represent different combinations of these groups.

 $687\ 00:26:20.820 \longrightarrow 00:26:21.720$ And this brings us to

 $688\ 00:26:21.720 \longrightarrow 00:26:24.540$ that multi-source exchangeability framework.

 $689\ 00:26:24.540 \longrightarrow 00:26:26.490$ So we see here on this slide,

 $690\ 00{:}26{:}26{.}490 \dashrightarrow 00{:}26{:}29{.}220\ \mathrm{I}$ now of a graphic showing four different combinations

 $691\ 00:26:29.220$ --> 00:26:32.100 of exchangeability when we have these two other baskets

 $692~00{:}26{:}32.100 \dashrightarrow 00{:}26{:}34.750$ that compare to our one basket of interest right now.

 $693\ 00:26:35.610 \longrightarrow 00:26:38.100$ And from top left to the bottom left

694 00:26:38.100 --> 00:26:39.480 in sort of a clockwise fashion,

 $695\ 00:26:39.480 \longrightarrow 00:26:41.760$ we see that making different assumptions from

696 00:26:41.760 --> 00:26:43.580 that standard analysis with no borrowing

 $697\ 00:26:43.580 \longrightarrow 00:26:46.020$ in the top right here where I'm drawing that arrow.

 $698\ 00:26:46.020 \longrightarrow 00:26:47.820$ So it is possible that

 $699\ 00:26:47.820 --> 00:26:49.257$ none of our data sources are exchangeable

700 00:26:49.257 --> 00:26:51.150 and we should be doing an analysis that

 $701\ 00:26:51.150 \longrightarrow 00:26:53.160$ doesn't share information.

 $702~00{:}26{:}53.160 {\:{\mbox{--}}\!>} 00{:}26{:}55.050$ On the right hand side that we might envision that

703~00:26:55.050 --> 00:26:58.320 well may be the first basket or Y1 is exchangeable.

 $704\ 00:26:58.320 --> 00:27:01.050$ So we wanna pull that with Y2 or excuse me with Yp,

 $705\ 00:27:01.050 \longrightarrow 00:27:02.670$ but Y2 is not.

706 00:27:02.670 --> 00:27:04.830 In the bottom right, this capital omega two,

707 00:27:04.830 --> 00:27:06.720 we actually assume that Y2 is exchangeable

 $708\ 00:27:06.720 \longrightarrow 00:27:08.550$ but Y1 is not.

 $709\ 00:27:08.550 \longrightarrow 00:27:10.293$ And in the bottom left we assume in this case

 $710\ 00:27:10.293 --> 00:27:11.637$ that all the data is exchangeable

- $711\ 00:27:11.637 --> 00:27:13.653$ and we should just pool it all together.
- 712 00:27:15.300 --> 00:27:16.770 So at this stage we've actually
- 713 00:27:16.770 --> 00:27:20.040 proposed all the configurations we can pairwise
- 714 00:27:20.040 --> 00:27:23.400 of combining these different data sources with Y sub P.
- $715~00:27:23.400 \longrightarrow 00:27:25.890$ And we know that these are fitting four now different models
- $716\ 00:27:25.890 \longrightarrow 00:27:27.390$ based off of the data
- $717\ 00{:}27{:}27.390 \dashrightarrow 00{:}27{:}30.240$ because for example in the top left, that standard analysis,
- $718\ 00{:}27{:}30.240 \dashrightarrow 00{:}27{:}33.120$ there is no extra information from those other baskets
- $719\ 00:27:33.120 \longrightarrow 00:27:34.800$ versus like in the bottom left,
- 720 00:27:34.800 --> 00:27:36.180 we basically have combined everything
- $721\ 00:27:36.180 \longrightarrow 00:27:38.670$ and we think there's some common effect.
- $722~00:27:38.670 \longrightarrow 00:27:40.440$ Now this leads to two challenges on its own
- $723\ 00:27:40.440 --> 00:27:42.510$ if we just stopped here with the framework.
- $724\ 00:27:42.510 --> 00:27:44.280$ One would be that we'd have this idea of maybe
- $725\ 00{:}27{:}44.280 \dashrightarrow 00{:}27{:}46.770$ cherry picking or trying to pick whichever combination
- 726 00:27:46.770 --> 00:27:50.160 best suits your prior hypotheses clinically.
- $727\ 00:27:50.160 \longrightarrow 00:27:51.360$ And so that would be a big no-go.
- 728 00:27:51.360 --> 00:27:52.410 We don't like cherry picking
- $729\ 00:27:52.410 --> 00:27:53.970$ or fishing for things like P values
- $730\ 00:27:53.970 \longrightarrow 00:27:56.493$ or significance in our statistical analyses.
- 731 00:27:57.330 --> 00:27:59.100 The other challenge also is that
- $732\ 00:27:59.100 \longrightarrow 00:28:01.380$ all of these configurations are just assumptions
- $733\ 00:28:01.380 \longrightarrow 00:28:02.520$ of how we could combine data
- 734 00:28:02.520 --> 00:28:05.220 but we know underlying everything in the population is that
- 735 00:28:05.220 --> 00:28:07.140 true assumption of exchange ability of

 $736\ 00:28:07.140 --> 00:28:10.500$ are these baskets or groups truly combinable or not?

737 00:28:10.500 --> 00:28:13.320 And we're just approximating that with our sample.

738 00:28:13.320 --> 00:28:15.450 And so right now if we have four separate models

739 00:28:15.450 --> 00:28:17.670 and potentially four separate conclusions,

 $740\ 00:28:17.670 --> 00:28:20.010$ we need some way of combining these models

 $741\ 00:28:20.010 \longrightarrow 00:28:21.390$ to make inference.

 $742\ 00:28:21.390 \longrightarrow 00:28:23.160$ And in this case we propose

743 00:28:23.160 --> 00:28:25.980 leveraging a Bayesian model averaging framework

 $744\ 00:28:25.980 \longrightarrow 00:28:27.960$ where we calculate in this case

745 00:28:27.960 --> 00:28:28.793 and in our formulas here,

 $746\ 00:28:28.793 \longrightarrow 00:28:31.830$ the queues represent a posterior distribution

747 00:28:31.830 --> 00:28:33.180 where I've drawn this little arrow

748 00:28:33.180 --> 00:28:35.190 and I'm underlining right now,

 $749~00:28:35.190 \longrightarrow 00:28:38.850$ that reflects each square's configuration of

 $750\ 00:28:38.850 \longrightarrow 00:28:41.220$ exchange ability for our estimates.

751 00:28:41.220 --> 00:28:42.150 And through this process

 $752\ 00{:}28{:}42.150 \dashrightarrow 00{:}28{:}44.820$ we estimate these lower case omega model weights

 $753\ 00:28:44.820 \longrightarrow 00:28:46.860$ that tries to estimate the appropriateness

754 00:28:46.860 --> 00:28:49.830 of exchangeability with the ultimate goal of

 $755\ 00:28:49.830 \longrightarrow 00:28:52.860$ having a average posterior that we can use

 $756\ 00:28:52.860 \longrightarrow 00:28:54.210$ for statistical inference

757 00:28:54.210 --> 00:28:57.060 to draw a conclusion about the potential efficacy

 $758\ 00:28:57.060 \longrightarrow 00:28:58.653$ or lack thereof of a treatment.

759 00:29:01.530 --> 00:29:02.640 Now very briefly,

 $760\ 00:29:02.640 \longrightarrow 00:29:05.850$ because this is a Bayesian model averaging framework,

 $761\ 00:29:05.850 \longrightarrow 00:29:08.400$ just one of the few formulas I have in the presentation,

 $762\ 00:29:08.400 \longrightarrow 00:29:10.350$ we just see over here that we have

 $763\ 00:29:10.350 \longrightarrow 00:29:12.720$ the way we calculate these posterior model weights

 $764\ 00:29:12.720 \longrightarrow 00:29:14.970$ as the prior on each model

 $765\ 00:29:14.970 \dashrightarrow 00:29:18.090$ multiplied by an integrated marginal likelihood.

 $766\ 00:29:18.090 \longrightarrow 00:29:19.530$ Essentially, we can think of that as saying

 $767\ 00:29:19.530 \dashrightarrow 00:29:22.020$ based off of that square we saw on the previous slide

768 00:29:22.020 --> 00:29:24.630 and combining those different data sources,

 $769\ 00:29:24.630 \longrightarrow 00:29:26.430$ what is that estimate of the effect

 $770\ 00:29:26.430 \longrightarrow 00:29:28.890$ with those different combinations?

771 00:29:28.890 --> 00:29:31.080 One unique thing about the MEM framework

772 00:29:31.080 --> 00:29:33.540 that differs from Bayesian model averaging though is that

 $773\ 00:29:33.540 --> 00:29:37.290$ we actually specify priors with respect to these sources.

 $774\ 00:29:37.290 \longrightarrow 00:29:39.030$ And in the case of this example

 $775\ 00:29:39.030 \longrightarrow 00:29:42.390$ with only two supplemental like sources for our graphic,

776 00:29:42.390 --> 00:29:44.520 it's not a great cost savings,

 $777\ 00:29:44.520 \longrightarrow 00:29:46.710$ but we can imagine that if we have more and more sources,

 $778\ 00:29:46.710 \longrightarrow 00:29:50.250$ there's actually two to the P if P's the number of sources,

779 00:29:50.250 --> 00:29:51.720 combinations of exchange ability

 $780\ 00:29:51.720 \longrightarrow 00:29:53.610$ that we have to consider and model.

781 00:29:53.610 --> 00:29:55.800 And that quickly can become overwhelming if we have

782 00:29:55.800 --> 00:29:57.570 multiple sources that we have to define

 $783\ 00:29:57.570 \longrightarrow 00:29:58.680$ for each one of those squares,

784~00:29:58.680 --> 00:30:02.040 what's my prior that each combination of exchangeability

 $785\ 00:30:02.040 \longrightarrow 00:30:03.840$ is potentially true.

 $786\ 00:30:03.840 \longrightarrow 00:30:06.210$ Versus if we define it with respect to the source,

787 00:30:06.210 --> 00:30:09.480 we now go from two to the P priors to just P priors

788 00:30:09.480 --> 00:30:11.987 we have to specify for exchangeability.

789 00:30:14.340 --> 00:30:17.370 A few more notes about this idea here

 $790\ 00:30:17.370 --> 00:30:18.960$ and just really zooming in on

 $791~00{:}30{:}18.960 \dashrightarrow 00{:}30{:}21.420$ what we're gonna focus on for today's presentation.

 $792\ 00:30:21.420 \longrightarrow 00:30:22.740$ We have developed both fully

 $793\ 00:30:22.740 \longrightarrow 00:30:24.840$ and empirically Bayesian prior approaches here,

794 00:30:24.840 --> 00:30:28.740 fully Bayesian meaning that it is defined a priori

795 00:30:28.740 --> 00:30:30.870 and is agnostic to the data you've collected,

796 00:30:30.870 --> 00:30:32.040 empirically Bayesian meaning

 $797\ 00:30:32.040 \longrightarrow 00:30:33.540$ we leverage the data we've collected

 $798~00{:}30{:}33.540 \dashrightarrow 00{:}30{:}36.843$ to help inform that prior for what we've observed.

799 00:30:38.010 --> 00:30:39.930 Specifically there is a what we call a

800 00:30:39.930 --> 00:30:41.580 non constrained, or naive,

801 00:30:41.580 --> 00:30:43.230 empirically based prior

 $802\ 00{:}30{:}43.230 \dashrightarrow 00{:}30{:}45.300$ where we would look through all of those growths we had

 $803\ 00:30:45.300 \longrightarrow 00:30:46.590$ and we would say, "Whichever one of these

 $804\ 00:30:46.590 \longrightarrow 00:30:49.170$ maximizes the integrated marginal likelihood

 $805\ 00:30:49.170 \longrightarrow 00:30:50.790$ that's the correct configuration

806~00:30:50.790 --> 00:30:52.890 and we're gonna put all of our eggs into that basket."

 $807\ 00:30:52.890 \longrightarrow 00:30:55.470$ Or 100% of the probability there

 $808\ 00:30:55.470 --> 00:30:57.813$ and that's the only model we use for analysis.

- 809 00:30:58.830 --> 00:30:59.940 We know, generally speaking,
- $810\ 00:30:59.940 \longrightarrow 00:31:01.920$ since we went to all the work to defining
- $811\ 00:31:01.920 --> 00:31:04.080$ all of these different combinations of exchangeability
- 812 00:31:04.080 --> 00:31:05.580 and that it's based off of samples,
- 813 00:31:05.580 --> 00:31:07.350 potentially small samples,
- $814\ 00:31:07.350 \longrightarrow 00:31:10.080$ that this can be a very strong assumption.
- 815 00:31:10.080 --> 00:31:12.120 And so we can also modify this prior
- 816 00:31:12.120 --> 00:31:14.880 to what we call a constrained EB prior,
- $817\ 00{:}31{:}14.880 \dashrightarrow 00{:}31{:}18.150$ where instead of just giving every one of those model
- 818 00:31:18.150 --> 00:31:20.010 sources in that MEM that
- 819 00:31:20.010 --> 00:31:22.710 maximizes the likelihood 100% weight,
- 820 00:31:22.710 --> 00:31:25.470 we instead give it a weight of what we're calling just B.
- 821 00:31:25.470 --> 00:31:28.080 This is our hyper prior value here
- $822\ 00:31:28.080 \longrightarrow 00:31:30.870$ where if it's a value of zero or up to one,
- $823\ 00:31:30.870 --> 00:31:32.430$ it'll control the amount of borrowing
- $824\ 00:31:32.430 \longrightarrow 00:31:35.760$ and allow other nested models of exchangeability
- $825\ 00:31:35.760 \longrightarrow 00:31:39.300$ to also be potentially considered for analysis.
- 826 00:31:39.300 --> 00:31:40.260 So for example,
- $827\ 00:31:40.260 \longrightarrow 00:31:41.580$ if we do set a value of one
- 828 00:31:41.580 --> 00:31:44.280 that actually replicates the non constrained EB prior
- $829\ 00{:}31{:}44.280 \dashrightarrow 00{:}31{:}47.520$ and really aggressively borrows from one specific model.
- $830\ 00:31:47.520 --> 00:31:50.490$ At the other extreme here, if we set a value of zero,
- $831\ 00:31:50.490 \longrightarrow 00:31:53.070$ we essentially recreate an independent analysis
- 832 00:31:53.070 --> 00:31:55.290 like assign a two stage design or just using those
- 833 00:31:55.290 --> 00:31:56.940 Bayesian methods for futility monitoring

- $834\ 00:31:56.940 \longrightarrow 00:31:58.740$ that doesn't share information.
- $835\ 00:31:58.740 --> 00:32:00.180$ And then any value in between
- 836 $00:32:00.180 \longrightarrow 00:32:02.520$ gives a little more granularity or control
- $837\ 00:32:02.520 \longrightarrow 00:32:03.993$ over the amount of borrowing.
- 838 00:32:06.257 --> 00:32:08.313 So with that background behind us,
- 839 00:32:09.276 --> 00:32:10.830 I'm gonna introduce the simulation stuff
- $840\ 00:32:10.830 \longrightarrow 00:32:12.780$ and then present results for a couple
- 841 00:32:12.780 --> 00:32:15.033 key operating characteristics for our trial.
- $842\ 00{:}32{:}15.870 \dashrightarrow 00{:}32{:}18.240$ In this case, we're going to assume for our simulations
- $843\ 00:32:18.240 \longrightarrow 00:32:19.380$ that we have a basket trial
- $844\ 00:32:19.380 \longrightarrow 00:32:21.300$ with 10 different baskets or indications.
- 845 00:32:21.300 --> 00:32:23.370 So again, that's 10 different types of cancer
- $846\ 00:32:23.370 \longrightarrow 00:32:25.260$ that we have enrolled that all have
- 847 00:32:25.260 --> 00:32:28.290 the same genetic mutation that we think is targeted
- $848\ 00:32:28.290 \longrightarrow 00:32:31.080$ by the therapy of interest.
- $849\ 00:32:31.080 \longrightarrow 00:32:31.950$ Like we had before,
- 850 00:32:31.950 --> 00:32:36.420 we're going to assume a null response P knot of 0.1 or 10%.
- 851~00:32:36.420 --> 00:32:40.053 And an alternative response rate of 30% or P1 here.
- $852\ 00{:}32{:}41.040 \dashrightarrow 00{:}32{:}43.260$ We are gonna compare then three different designs
- $853\ 00:32:43.260 \longrightarrow 00:32:46.110$ that we just spent some time introducing and outlining.
- $854\ 00:32:46.110 --> 00:32:49.110$ The first is a Simon minimax two-stage design
- $855\ 00:32:49.110 --> 00:32:52.200$ using that exact set up that we had before
- 856 00:32:52.200 --> 00:32:53.700 where we will enroll 16 people,
- $857\ 00:32:53.700 \longrightarrow 00:32:56.490$ determine if we have one or fewer observations of success.
- $858\ 00:32:56.490 \longrightarrow 00:32:58.020$ If so, stop the trial.
- $859\ 00:32:58.020 \longrightarrow 00:32:59.343$ If not, continue on.

- $860\ 00:33:00.210 \longrightarrow 00:33:01.110$ In the second case,
- 861 00:33:01.110 --> 00:33:02.940 we're going to implement a Bayesian design
- 862 00:33:02.940 --> 00:33:05.100 that uses predictive probability monitoring
- 863 00:33:05.100 --> 00:33:07.050 but we don't use any information sharing
- $864\ 00:33:07.050 \longrightarrow 00:33:08.760$ just to illustrate that we can at least
- 865 00:33:08.760 --> 00:33:11.670 potentially improve upon the frequency
- $866\ 00{:}33{:}11.670 \dashrightarrow 00{:}33{:}14.400$ in use of a interim monitoring above a single look
- $867\ 00:33:14.400 \longrightarrow 00:33:16.590$ from the Simon minimax design.
- $868\ 00:33:16.590 \longrightarrow 00:33:17.850$ And then the third design
- 869 00:33:17.850 --> 00:33:19.920 will add another layer of complexity
- $870\ 00:33:19.920$ --> 00:33:22.830 where we will try to share information across baskets
- $871\ 00:33:22.830 \longrightarrow 00:33:26.613$ that have what we estimate to be exchangeable subgroups.
- $872\ 00:33:27.510 \longrightarrow 00:33:28.620$ One thing to note here is that
- 873 00:33:28.620 --> 00:33:32.460 we are setting this hyper parameter value B at 0.1.
- $874\ 00:33:32.460 \longrightarrow 00:33:34.020$ This is a fairly conservative value
- $875\ 00:33:34.020 \longrightarrow 00:33:36.240$ and admittedly for this design
- $876\ 00:33:36.240 --> 00:33:38.520$ we actually did not calibrate specifically
- $877\ 00:33:38.520 \longrightarrow 00:33:40.200$ for the amount of borrowing to be 0.1.
- $878\ 00:33:40.200 \longrightarrow 00:33:41.130$ This is actually based off of
- $879\ 00:33:41.130 \longrightarrow 00:33:42.630$ some other prior work we've done
- $880\ 00{:}33{:}42.630$ --> $00{:}33{:}44.970$ and published on basket trials that just showed that
- $881\ 00{:}33{:}44.970 \dashrightarrow 00{:}33{:}48.750$ in the case of an empirically Bayesian prior for MEMs,
- 882 00:33:48.750 --> 00:33:50.970 this actually allows information sharing
- $883\ 00{:}33{:}50.970 \dashrightarrow 00{:}33{:}53.310$ in cases where there's a high degree of exchangeability
- 884 00:33:53.310 --> 00:33:54.990 and low heterogeneity
- $885\ 00:33:54.990 --> 00:33:56.850$ and down leap it in cases where we might be

- 886 00:33:56.850 --> 00:33:57.840 a little more uncertain,
- $887\ 00:33:57.840 \longrightarrow 00:33:59.130$ so it's a little more conservative
- 888 00:33:59.130 --> 00:34:01.290 but we'll see in the simulation results
- $889\ 00:34:01.290 \longrightarrow 00:34:03.063$ there are some potential benefits.
- $890\ 00:34:05.040 \longrightarrow 00:34:08.070$ For each of the scenarios we're gonna look at today,
- $891\ 00:34:08.070 --> 00:34:10.140$ we will generate a thousand trials
- $892\ 00:34:10.140 --> 00:34:13.950$ with a maximum sample size of 25 per basket.
- $893\ 00:34:13.950 \longrightarrow 00:34:15.900$ We're gonna look at two cases,
- $894\ 00:34:15.900 \longrightarrow 00:34:17.100$ there's a few other in the paper
- $895\ 00:34:17.100 --> 00:34:19.590$ but we're gonna focus on first the global scenario
- $896\ 00:34:19.590 \longrightarrow 00:34:21.360$ where all the baskets are either null
- $897\ 00:34:21.360 --> 00:34:24.420$ or all 10 baskets have some meaningful effect.
- $898\ 00:34:24.420 \longrightarrow 00:34:25.440$ And this is the setting where
- 899 00:34:25.440 --> 00:34:27.180 information sharing methods like meds
- 900 00:34:27.180 --> 00:34:29.220 really should outperform anything else
- 901 00:34:29.220 --> 00:34:31.440 because everything is truly exchangeable
- $902\ 00{:}34{:}31.440 {\:{\circ}{\circ}{\circ}}>00{:}34{:}33.960$ and everything could naively be pooled together
- $903\ 00{:}34{:}33.960 \dashrightarrow 00{:}34{:}37.110$ because we're simulating them to have the same response.
- $904\ 00:34:37.110 --> 00:34:38.970$ We'll then look at what happens if we actually have
- 905 00:34:38.970 --> 00:34:40.200 a mixed scenario,
- 906 00:34:40.200 --> 00:34:41.970 which I think is actually more indicative
- $907\ 00:34:41.970 --> 00:34:43.170$ of what's happened in practice
- $908\ 00:34:43.170 --> 00:34:45.300$ with some of the published basket trials
- 909 00:34:45.300 --> 00:34:47.460 and clinically what we've seen from applications
- $910\ 00:34:47.460 \longrightarrow 00:34:49.200$ of these types of designs.
- 911 00:34:49.200 --> 00:34:51.510 Specifically here, we're gonna look at the case where

- $912\ 00:34:51.510 --> 00:34:54.813$ there are eight null baskets and two alternative baskets.
- 913 00:34:56.940 --> 00:34:59.220 A few other points just to highlight here.
- $914\ 00:34:59.220 \longrightarrow 00:35:02.070$ We're going to assume a beta 0.5 0.5 prior
- 915 00:35:02.070 --> 00:35:03.540 for our Bayesian models.
- 916 00:35:03.540 --> 00:35:06.360 This essentially for a binary outcome can be thought of as
- $917\ 00:35:06.360 \longrightarrow 00:35:07.860$ adding half of a response
- $918\ 00:35:07.860 --> 00:35:12.270$ and half of a lack of a response to our observed data.
- 919 00:35:12.270 --> 00:35:15.810 We're going to look at the most extreme dream Bayesian case
- 920 00:35:15.810 --> 00:35:17.850 of doing utility monitoring
- $921\ 00:35:17.850 \longrightarrow 00:35:20.340$ or any type of interim monitoring continually.
- 922 00:35:20.340 \rightarrow 00:35:22.410 So after every single participant's enrolled
- $923\ 00:35:22.410 \longrightarrow 00:35:23.940$ we will do a calculation
- $924\ 00:35:23.940 \longrightarrow 00:35:26.880$ and determine if we should stop the trial.
- 925 00:35:26.880 --> 00:35:29.340 We will then look at the effect of this choice
- 926 00:35:29.340 --> 00:35:33.660 across a range of predictive probability thresholds
- $927\ 00:35:33.660 \longrightarrow 00:35:35.070$ ranging from 0%,
- 928 00:35:35.070 --> 00:35:36.640 meaning we wouldn't stop early at all,
- 929 00:35:36.640 --> 00:35:39.360 up to 50% saying if there's anything less
- 930 00:35:39.360 --> 00:35:41.250 than a 50% chance I'll find success,
- 931 00:35:41.250 --> 00:35:42.723 I wanna stop that trial.
- 932 00:35:43.800 --> 00:35:45.180 And then finally it's worth noting
- 933 00:35:45.180 --> 00:35:49.020 we're actually also completely disregarding calibration
- $934\ 00:35:49.020 \longrightarrow 00:35:50.910$ for this interim monitoring.
- $935\ 00:35:50.910 \longrightarrow 00:35:51.930$ And so what we're gonna do is
- 936 $00:35:51.930 \longrightarrow 00:35:53.820$ we're gonna calibrate our decision rules
- 937 00:35:53.820 --> 00:35:57.120 for the posterior probability at the end of the trial

- 938 00:35:57.120 --> 00:35:58.920 based off of a global scenario where
- 939 00:35:58.920 --> 00:36:01.560 we think it's ideal to share information
- 940 00:36:01.560 --> 00:36:03.270 and we're all not gonna account for the fact that
- 941 00:36:03.270 --> 00:36:05.400 we're doing interim looks at the data.
- $942\ 00:36:05.400 \longrightarrow 00:36:06.810$ Part of the question here was
- $943\ 00:36:06.810 \longrightarrow 00:36:08.490$ if we truly do all these assumptions
- $944\ 00:36:08.490 \longrightarrow 00:36:11.070$ and we do sort of the most naive thing,
- 945 00:36:11.070 --> 00:36:12.750 how badly do we actually do?
- $946\ 00:36:12.750 \longrightarrow 00:36:15.570$ Like is there enough reason to fear the results
- 947 $00:36:15.570 \longrightarrow 00:36:18.333$ if we don't correctly calibrate for everything here?
- 948 00:36:20.970 --> 00:36:24.090 So I'm gonna paint some pictures here building from the
- 949 00:36:24.090 --> 00:36:27.210 simpler Simon design to our more complex Bayesian designs
- 950 00:36:27.210 --> 00:36:28.500 and then with information sharing
- 951 00:36:28.500 --> 00:36:31.260 just to illustrate three different properties.
- 952 00:36:31.260 --> 00:36:32.790 I'm gonna go fairly quickly
- 953 00:36:32.790 --> 00:36:35.490 'cause I know that you all have to vacate the classroom
- $954\ 00:36:35.490 \longrightarrow 00:36:37.200$ in about 10 minutes.
- $955\ 00{:}36{:}37.200 \dashrightarrow 00{:}36{:}40.500$ So for the global scenario that we're looking at here,
- $956\ 00:36:40.500 \longrightarrow 00:36:43.860$ the like rate lines are going to represent
- $957\ 00:36:43.860 \longrightarrow 00:36:45.870$ the alternative basket scenario.
- $958\ 00:36:45.870 \longrightarrow 00:36:48.900$ So all, in this case, all 10 null baskets.
- $959\ 00:36:48.900 \longrightarrow 00:36:51.030$ Here we see we plan for 90% power
- 960 00:36:51.030 --> 00:36:52.860 Simon's design appropriately achieved
- 961 00:36:52.860 \rightarrow 00:36:55.230 that rejection rate of 90%.
- 962 00:36:55.230 --> 00:36:57.750 Likewise, the lines at the bottom here,
- 963 00:36:57.750 --> 00:36:58.950 these black lines,

 $964\ 00{:}36{:}58.950 \dashrightarrow 00{:}37{:}01.200$ are going to represent the results of null baskets.

 $965\ 00:37:01.200 \longrightarrow 00:37:02.760$ Here are the global null scenario

966 00:37:02.760 --> 00:37:05.433 and we see that it achieves a 10% rejection rate.

 $967\ 00:37:06.330 \longrightarrow 00:37:08.130$ Now, this is a flat line here

968 00:37:08.130 --> 00:37:10.830 because again Simon's design is agnostic to things like

 $969\ 00:37:10.830 \longrightarrow 00:37:12.273$ the predictive probability.

970 00:37:13.110 --> 00:37:16.320 Now if we do frequent Bayesian monitoring,

 $971\ 00:37:16.320 \longrightarrow 00:37:18.870$ we see two interesting things here with these new lines.

 $972\ 00:37:18.870 \longrightarrow 00:37:20.820$ We see that at the top

 $973\ 00:37:20.820 \longrightarrow 00:37:22.800$ and the bottom, here I add these circles

974 00:37:22.800 --> 00:37:25.320 where the predictive probability threshold is 0%.

 $975\ 00:37:25.320 \longrightarrow 00:37:27.090$ This does represent the actual design

976 00:37:27.090 --> 00:37:29.490 that would correspond to the actual calibration we did

977 00:37:29.490 --> 00:37:31.260 without interim monitoring.

978 00:37:31.260 --> 00:37:33.690 And we see that it is possible with Bayesian approaches

979 00:37:33.690 --> 00:37:37.050 to achieve the same frequent operating characteristics

980 00:37:37.050 --> 00:37:40.200 that we would achieve with something like the Simon design.

981 00:37:40.200 --> 00:37:42.720 We can see though that if we want to do interim monitoring

 $982\ 00:37:42.720 \longrightarrow 00:37:43.830$ but we didn't calibrate

983 00:37:43.830 --> 00:37:45.840 or think of that in our calculations,

 $984\ 00:37:45.840 \longrightarrow 00:37:48.660$ we do see this trade off where we have our

 $985\ 00:37:48.660 \longrightarrow 00:37:50.970$ alternative baskets having a decreasing power

 $986\ 00:37:50.970 \longrightarrow 00:37:53.310$ or rejection rate as the aggressiveness of the

 $987\ 00:37:53.310 \longrightarrow 00:37:55.920$ predictive probability threshold increases.

988 00:37:55.920 --> 00:37:58.620 And likewise the type one error rate or the

989 00:37:58.620 --> 00:38:01.533 rejection rate of the marginal baskets also decreases.

990 00:38:02.370 \rightarrow 00:38:05.850 Now if we add information sharing to this design,

991 $00:38:05.850 \longrightarrow 00:38:07.740$ we actually see some encouraging results

992 $00:38:07.740 \longrightarrow 00:38:09.360$ in this global scenario.

993 00:38:09.360 --> 00:38:11.070 First, it's worth noting that in the case

 $994\ 00:38:11.070 \longrightarrow 00:38:12.360$ where we actually calibrated for,

995 00:38:12.360 --> 00:38:17.010 we actually see an increase in power from 90% to about 97%.

 $996\ 00:38:17.010 \longrightarrow 00:38:18.690$ And even when we actually have a

997 00:38:18.690 --> 00:38:23.400 10% predictive probability threshold for interim monitoring,

 $998\ 00:38:23.400 \longrightarrow 00:38:26.070$ we see that we actually still achieve 90% power

999 00:38:26.070 --> 00:38:30.450 with a corresponding reduction in that type one error rate.

1000 00:38:30.450 --> 00:38:32.100 Of course, this is with the caveat that

 $1001\ 00:38:32.100 \dashrightarrow 00:38:34.650$ this is the ideal setting for sharing information

 $1002\ 00{:}38{:}34.650 \dashrightarrow 00{:}38{:}37.383$ because all of the baskets are truly exchangeable.

 $1003\ 00{:}38{:}38.220 \dashrightarrow 00{:}38{:}40.620$ Now the rejection rate correlates to something we call

 $1004\ 00:38:40.620 \longrightarrow 00:38:41.760$ that expected sample size.

 $1005\ 00:38:41.760 --> 00:38:43.830$ What is the average sample size we might enroll

 $1006\ 00:38:43.830 \longrightarrow 00:38:47.010$ for each basket of our 10 baskets in the trial?

 $1007\ 00:38:47.010 \longrightarrow 00:38:49.590$ We see here that in the case of a null basket

 $1008\ 00:38:49.590 \longrightarrow 00:38:51.363$ the Simon design is about 20.

 $1009\ 00:38:53.250 \longrightarrow 00:38:55.560$ If we do interim monitoring with Bayesian approaches

1010 00:38:55.560 --> 00:38:57.450 and no information sharing,

- $1011\ 00:38:57.450 \longrightarrow 00:38:59.137$ obviously if we don't do any interim looks at the data,
- $1012\ 00:38:59.137 \longrightarrow 00:39:01.380$ we have a 0% threshold,
- $1013\ 00:39:01.380 \longrightarrow 00:39:05.040$ we're gonna have a sample size of 25 every single time.
- $1014\ 00:39:05.040 --> 00:39:06.330$ I think what's encouraging though is that
- $1015\ 00:39:06.330 --> 00:39:09.450$ by looking fairly aggressively we see that our sample size,
- $1016\ 00:39:09.450 \longrightarrow 00:39:10.920$ even with a very marginal
- 1017 00:39:10.920 --> 00:39:13.890 or low 5% threshold for futility monitoring,
- $1018\ 00{:}39{:}13.890 \dashrightarrow 00{:}39{:}17.910$ drops from 20 in the assignment design to about 15
- $1019\ 00:39:17.910 \longrightarrow 00:39:19.380$ in the Bayesian design,
- $1020\ 00{:}39{:}19.380$ --> $00{:}39{:}21.660$ the trade-off of course being because we didn't calibrate.
- $1021\ 00:39:21.660 --> 00:39:24.300$ We also see a reduction in the sample size
- $1022\ 00:39:24.300 \longrightarrow 00:39:25.863$ for the alternative baskets.
- $1023\ 00:39:27.630 \longrightarrow 00:39:30.030$ And if we add that layer of information sharing,
- $1024\ 00{:}39{:}30.030 \dashrightarrow 00{:}39{:}32.070$ we actually see that we do slightly better than
- $1025\ 00:39:32.070 --> 00:39:33.840$ the design without information sharing
- $1026\ 00:39:33.840 \longrightarrow 00:39:36.870$ while attenuating at the top here the effect
- $1027\ 00:39:36.870$ --> 00:39:39.933 our solid gray line has for the alternative baskets.
- $1028\ 00:39:41.580 \longrightarrow 00:39:44.550$ Now, briefly tying this together then to the stopping rate,
- $1029\ 00:39:44.550 \longrightarrow 00:39:47.190$ which we can kind of infer from those past results,
- $1030\ 00{:}39{:}47.190 \dashrightarrow 00{:}39{:}50.400$ we do see that on average the Simon two-stage design
- 1031 00:39:50.400 --> 00:39:52.380 for the null baskets stopping for futility
- $1032~00{:}39{:}52.380 --> 00{:}39{:}55.170$ is only taking place a little over 50% of the time
- $1033\ 00:39:55.170 \longrightarrow 00:39:56.580$ in this simulation.

- $1034\ 00:39:56.580 \longrightarrow 00:39:58.290$ The advantage here though is that it is
- $1035\ 00{:}39{:}58.290 {\:{\mbox{--}}\!>}\ 00{:}40{:}01.233$ very rarely stopping for the alternative baskets.
- 1036 00:40:02.340 --> 00:40:03.480 In our Bayesian approaches,
- $1037\ 00:40:03.480 \longrightarrow 00:40:06.050$ we see that there is an over 80%
- $1038\ 00{:}40{:}06.050 \dashrightarrow 00{:}40{:}08.790$ of these low thresholds probability of stopping
- $1039\ 00:40:08.790 \longrightarrow 00:40:10.200$ if it's a null effect.
- $1040\ 00:40:10.200 \longrightarrow 00:40:12.270$ And this is ideal because we have 10 baskets.
- $1041\ 00:40:12.270 \longrightarrow 00:40:14.130$ And so these potential savings or effects
- $1042\ 00:40:14.130 --> 00:40:16.830$ can compound themselves across these multiple baskets.
- $1043\ 00{:}40{:}18.300 \dashrightarrow 00{:}40{:}20.910$ We then see that the design adding these solid lines
- 1044 00:40:20.910 --> 00:40:23.010 for information sharing do very similarly
- $1045\ 00:40:23.010 \longrightarrow 00:40:25.860$ where again the the consequence of not calibrating
- $1046\ 00:40:25.860 \longrightarrow 00:40:28.473$ are attenuated in this circumstance.
- $1047\ 00:40:29.550 \longrightarrow 00:40:31.230$ Now the thing to note here that
- 1048 00:40:31.230 --> 00:40:33.840 everything I presented on these few graphics
- 1049 00:40:33.840 --> 00:40:36.210 were with respect to the global scenario,
- $1050~00:40:36.210 \dashrightarrow 00:40:38.190$ that ideal scenario that I actually don't think
- $1051\ 00:40:38.190 --> 00:40:40.710$ is super realistic in practice.
- $1052\ 00:40:40.710$ --> 00:40:43.920 So we see here, if we do a mixed scenario where
- $1053\ 00:40:43.920 \longrightarrow 00:40:46.470$ we now have calibrated for the global scenarios,
- $1054\ 00:40:46.470 --> 00:40:48.210$ we've miscalibrated with respect to that.
- $1055\ 00{:}40{:}48.210 --> 00{:}40{:}51.480$ We've also not calibrated for interim looks at the data.
- $1056\ 00:40:51.480 --> 00:40:53.010$ We can actually see that the results for
- $1057\ 00:40:53.010 \longrightarrow 00:40:55.410$ the Simon two-stage in the Bayesian design
- $1058\ 00:40:55.410 \longrightarrow 00:40:57.510$ without information sharing are very similar

- $1059\ 00:40:57.510 \longrightarrow 00:40:58.650$ to what we saw before.
- $1060\ 00:40:58.650 \longrightarrow 00:41:00.180$ That's because they don't share information.
- $1061\ 00:41:00.180 \longrightarrow 00:41:02.070$ And so in this case with eight null baskets
- 1062 00:41:02.070 --> 00:41:03.840 into alternative baskets,
- $1063\ 00:41:03.840 \longrightarrow 00:41:06.210$ they have very similar responses.
- $1064\ 00{:}41{:}06.210 \dashrightarrow 00{:}41{:}09.060$ This contrasts of course with the MEM approach
- $1065\ 00:41:09.060 \longrightarrow 00:41:10.260$ or the information sharing approach
- $1066\ 00:41:10.260 \longrightarrow 00:41:11.820$ where we actually see now
- $1067\ 00:41:11.820 \longrightarrow 00:41:14.610$ many of these results are actually overlapping
- $1068\ 00{:}41{:}14.610 \dashrightarrow 00{:}41{:}17.700$ for information sharing and no information sharing.
- $1069\ 00{:}41{:}17.700 \dashrightarrow 00{:}41{:}21.030$ What this tells us is that even though we miscalibrated
- 1070 00:41:21.030 --> 00:41:23.040 up and down the design,
- $1071\ 00:41:23.040 \longrightarrow 00:41:25.680$ we are actually able with this more conservative prior
- 1072 00:41:25.680 --> 00:41:27.450 to down weight borrowing
- $1073\ 00:41:27.450 \longrightarrow 00:41:30.000$ and effectuate similar results
- $1074\ 00:41:30.000 \longrightarrow 00:41:34.020$ that at lower thresholds for utility monitoring for example
- $1075~00{:}41{:}34.020 \dashrightarrow 00{:}41{:}38.190$ at 5% can still show potential gains in efficiency relative
- $1076~00{:}41{:}38.190 \dashrightarrow 00{:}41{:}40.830$ to the Simon design that could likely further be improved
- $1077\ 00:41:40.830 \longrightarrow 00:41:42.333$ with actual calibration.
- 1078 00:41:44.130 --> 00:41:45.030 So just as a reminder,
- $1079\ 00:41:45.030 --> 00:41:46.050$ we demonstrated today
- $1080~00{:}41{:}46.050 {\:\hbox{--}}{>}~00{:}41{:}47.610$ and introduced the idea of Simon's two-stage design
- $1081\ 00{:}41{:}47.610 \dashrightarrow 00{:}41{:}51.150$ and some alternative methods to compete with them.
- $1082\ 00{:}41{:}51.150 --> 00{:}41{:}53.400$ And some just brief discussion and concluding points.

- $1083\ 00:41:53.400 \longrightarrow 00:41:54.510$ There is no free lunch
- $1084\ 00:41:54.510$ --> 00:41:57.030 and this is true regardless of where we are in statistics
- $1085\ 00:41:57.030 \longrightarrow 00:41:59.250$ that for example in our designs,
- $1086\ 00:41:59.250 --> 00:42:00.930$ besides the fact that we miscalibrated
- $1087\ 00:42:00.930 \longrightarrow 00:42:03.840$ and made it a bit harder of a comparison for our methods,
- $1088\ 00:42:03.840 \longrightarrow 00:42:05.040$ we did try to replicate
- $1089\ 00:42:05.040 --> 00:42:06.660$ what people might be doing in practice
- $1090\ 00:42:06.660 \longrightarrow 00:42:07.493$ or the challenge of
- 1091 00:42:07.493 --> 00:42:10.350 calibrating these designs into actuality.
- $1092\ 00{:}42{:}10.350 --> 00{:}42{:}13.170$ Simon's two-stage design does have a lot of benefits
- $1093\ 00:42:13.170 --> 00:42:15.360$ from it's ideal characteristics
- 1094 00:42:15.360 --> 00:42:16.530 that are easy to implement,
- $1095\ 00:42:16.530 \longrightarrow 00:42:19.590$ but it is limited in how often it may stop.
- 1096 00:42:19.590 --> 00:42:20.670 Our Bayesian designs,
- 1097 00:42:20.670 --> 00:42:22.140 with or without information sharing,
- $1098\ 00:42:22.140 \dashrightarrow 00:42:24.480$ can lead to reductions in the expected sample size
- 1099 00:42:24.480 --> 00:42:25.410 in the null basket
- $1100\ 00:42:25.410 \longrightarrow 00:42:27.180$ and further could be improved
- 1101 00:42:27.180 --> 00:42:28.830 if we actually incorporate calibration,
- $1102\ 00:42:28.830 \longrightarrow 00:42:29.970$ which we further explored
- $1103\ 00{:}42{:}29.970 \dashrightarrow 00{:}42{:}32.700$ in a statistical methods of medical research paper
- $1104\ 00:42:32.700 \longrightarrow 00:42:33.993$ published in 2020.
- 1105 00:42:34.975 --> 00:42:36.240 And so that I have some sources here
- $1106\ 00:42:36.240 \longrightarrow 00:42:37.440$ and I thank you for your attention
- $1107\ 00{:}42{:}37.440 \dashrightarrow 00{:}42{:}40.863$ and welcome any questions or discussion at this point.
- 1108~00:42:55.860 --> 00:42:58.610 < v Man>Thank you so much. Any questions from the room?
</v>

- 1109 00:43:11.520 --> 00:43:14.160 <
v Student>Okay, so yeah, I have questions.
</v>
- 1110 00:43:14.160 --> 00:43:18.030 So in the example you just showed,
- $1111\ 00:43:18.030 \longrightarrow 00:43:22.350$ all the like the task becomes so, can be achievable, right?
- $1112\ 00:43:22.350 \longrightarrow 00:43:24.840$ So if the baskets,
- $1113\ 00:43:24.840 \longrightarrow 00:43:27.840$ they are expected to have different benefits (indistinct),
- $1114\ 00:43:27.840 \longrightarrow 00:43:32.840$ and say the 10 basket (indistinct)
- $1115\ 00:43:32.961 \longrightarrow 00:43:37.350$ some other basket MEMs would allow a bigger benefit,
- $1116\ 00:43:37.350 \longrightarrow 00:43:41.010$ how will the (indistinct)
- $1117\ 00:43:44.700 \longrightarrow 00:43:45.753$ scenarios?
- 1118 00:43:48.360 --> 00:43:49.260 <v Alex>Yeah, well, I think,</v>
- $1119\ 00:43:49.260 --> 00:43:50.550$ if I understood your question correctly
- $1120\ 00:43:50.550 \longrightarrow 00:43:53.970$ and I misheard through the phone, let me know,
- $1121\ 00{:}43{:}53.970 {\: -->\:} 00{:}43{:}56.280$ but if we have different sample sizes for baskets,
- 1122 00:43:56.280 --> 00:43:58.470 which actually really corresponds
- $1123\ 00{:}43{:}58.470 \dashrightarrow 00{:}44{:}00.690$ to what we've seen in practice for real basket trials
- $1124\ 00:44:00.690 \longrightarrow 00:44:02.310$ where they have fairly
- 1125 00:44:02.310 --> 00:44:04.983 wide range of sample sizes in each basket.
- 1126 00:44:05.880 --> 00:44:06.870 I think what we would see,
- 1127 00:44:06.870 --> 00:44:08.880 and let me see if I can pop back quickly to the
- $1128\ 00{:}44{:}08.880 --> 00{:}44{:}12.720$ mixed scenario results here just to illustrate some ideas.
- 1129 00:44:12.720 --> 00:44:13.920 One of the concepts here that,
- 1130 00:44:13.920 --> 00:44:15.547 so we did explicitly look at that to say like,
- $1131\ 00{:}44{:}15.547 --> 00{:}44{:}18.030$ "Well, what if one basket never gets beyond seven
- $1132\ 00:44:18.030 \longrightarrow 00:44:20.010$ of the 25," let's say.

- $1133\ 00:44:20.010 \longrightarrow 00:44:21.240$ But what we can infer is that
- 1134 00:44:21.240 --> 00:44:23.460 if a basket stopped early for futility,
- $1135\ 00{:}44{:}23.460 \dashrightarrow 00{:}44{:}26.220$ it essentially has a smaller sample size to contribute
- $1136\ 00:44:26.220 \longrightarrow 00:44:28.920$ to any analysis whether or not it was a
- $1137\ 00:44:28.920 --> 00:44:31.530$ falsely stopped basket that had a 30% effect
- $1138\ 00:44:31.530 \longrightarrow 00:44:33.630$ or it was truly a null basket.
- $1139\ 00:44:33.630 \longrightarrow 00:44:36.390$ And so we do see in this case that the method
- $1140\ 00:44:36.390 \longrightarrow 00:44:39.330$ averaging over those ideas of differential sample sizes
- 1141 00:44:39.330 --> 00:44:41.160 based off of soft baskets
- 1142 00:44:41.160 --> 00:44:42.810 does seem to be borrowing,
- $1143\ 00:44:42.810 \longrightarrow 00:44:44.790$ appropriately depending on the context.
- $1144\ 00{:}44{:}44.790 \dashrightarrow 00{:}44{:}46.980$ So like the mixed scenario results here suggests
- $1145\ 00:44:46.980 \longrightarrow 00:44:49.830$ limited borrowing in the presence of that uncertainty
- $1146\ 00:44:49.830 --> 00:44:50.910$ from the global scenario
- 1147 00:44:50.910 --> 00:44:52.530 because we didn't calibrate for anything else
- $1148\ 00{:}44{:}52.530 \dashrightarrow 00{:}44{:}56.010$ it does show more of a benefit of the stopping rate
- $1149\ 00:44:56.010 \longrightarrow 00:44:58.290$ and other properties incorporating that data
- $1150\ 00:44:58.290 \longrightarrow 00:45:00.240$ even in small sample sizes.
- $1151\ 00:45:00.240 \longrightarrow 00:45:01.650$ And there's also been some other work
- $1152\ 00:45:01.650 --> 00:45:03.870$ and illustrations done by Dr. Emily Zebra
- $1153\ 00:45:03.870 --> 00:45:06.030$ at the Cleveland Clinic with who I work
- $1154\ 00{:}45{:}06.030 {\: -->\:} 00{:}45{:}08.700$ about some of the re-analysis of oncology trials
- 1155 00:45:08.700 --> 00:45:11.280 that do show even in small basket sizes,
- $1156\ 00:45:11.280 \longrightarrow 00:45:14.100$ we can move that significance evaluation
- 1157 00:45:14.100 --> 00:45:16.283 into a more clinically meaningful realm.
- 1158 00:45:26.312 --> 00:45:30.312 <v Wayne>Thanks, so do we have other questions?</v>

 $1159\ 00:45:57.093 --> 00:46:01.469$ Okay, so (indistinct) that's (indistinct).

 $1160\ 00{:}46{:}01.469 {\:\hbox{--}}{>}\ 00{:}46{:}06.469$ Okay, so since there are no questions let's stop here.

 $1161\ 00:46:06.699 \longrightarrow 00:46:09.116$ (indistinct)

1162 00:46:16.028 --> 00:46:18.445 <-v Alex>Yeah. Thank you all.</v>