Appendix
A.1 Variance formulas

A.1.1 Proof of formulas (3.2) and (3.3)

From equation (2.1) we have Xy = E™! (t’iEilXi)(Now,
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tering the initial time), which implies E (¢3) = V(¢;), we have that
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We are interested in the [3,3] component of the inverse of this matrix, which is

¢Spe=c (E(X;2X,)) c=

T
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If either V' (¢y) or pe:, are zero then
1

pe(l=pe) D2 D Ujj’)
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cYpc =

If we follow Lachin’s approach (Lachin, 2000), instead of using the asymptotic

variance use the variance of B conditional on the covariates, which is

N ~1
Z £ 1Xi> ;
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and redefine Xy as
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Then, we would take the expected value of the non-centrality parameter under

so that the test statistic is still
T =

the alternative hypothesis over the distribution of X;, i.e. we would compute
E [T?|H,]. If we assume that everyone is observed at the same set of time points,

then the only random covariate is exposure. Thus,




and the [3,3] component of the inverse is
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where the expected value is taken over the distribution of %;, so

E [T°|H)] C Nj2 ;;}é)é [(%) <_ %f) .

Noticing that Z = ) f; is a Binomial variable we ¢can work out the expected value,
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Then,

and
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The non-centrality parameter with the approach we followed in the paper is

Nﬁg ZZ(]]’) <€(1_p6>’

=0 j'=0

so thereisonly a (1 — %) forrection compared with the one obtained with Lachin’s
method.
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A.1.2 Proof of formula (3.4)

Following model (2.6), and our derivations on Appendix A.1.1, we now have that
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and using the results in Appendix A.1.1 we only need to derive the components in

the last row. We can derive E (X/;X;'X;),/in which the [4,1] component is equiva-
lent to the [3,2] and therefore it\takes the
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the [4,3] component is

(pe,to\/Pe(l —p)VV (t0)> D vig At spe d > i

i=0 j/=0 j=0 j'=0
and the [4,4] component is the same as the [4,2] component. An expression for

E (kt2) = p.E (szl) Cn terms of the known parameters is needed. Since we as-

0, then V (to) = E(2) = (1 — p.)E (téko) C pE (té,“), which
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sumed that ¢,
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We have from Appendix A.1.1 that

E (kto) = pe{(),k:l = Pe,to \/pe(l - pe)\/v (t0)7

therefore
fo,k:zl = Peyto — pe) Vv (tO)
and it can be deduced that
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We assume that the variance of ¢, is the same in exposed and unexposed, i.e.

\% (t(),k:()) =V (toyk:l). It follows that
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Plugging in expression (A.1) we obtain that
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Therefore,
E (kt3) = peE (5 4=1) =V (to) [:(i + Py (1= 2pe)] (X
Now, plugging in this last expression in the formula for E (X';X; i),(emd invert-

ing the matrix, it can be derived that its [4,4] component is

¢Spe=c (E (}(.’izglxi))‘l c=




If V(to) = 0, then

c'Ypc = ,
BT po(1 = py)s™det(A)
and if p.;, = 0 then
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If we can assume that ¢, and exposure are independent, then the formula we de-
rived for the case p.;, = 0 also applies to model (2.7), which assumes a general
form for the relationship between response and time in the unexposed but requires

that a main effect of time is in the model, we can rewrite the model as
E(Yi| X)) = Y0 + ity +oafi (i) + - - + agfq (tig) + ok + 73 (tij X ks)
where f, (t;;), v = 1,...,U are arbitrary functions of time. Since the [m, ¢] term

53

of the matrix E (X’;37'X;) can be written as Y ¢;/E (ijmZijq), where xy;j, is the
value of the mth covariate for subject i from gro

p k at time ¢;, and exposure and

time are independent, which implies

E (kifu (tij)) = E (ki) E (fu (tijr)) = pE (fu (tiyr)) Vu,



we have
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such that
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Since E (t;;;) = E (to)+sj’ and E (t;;t;5) = E (83)+s(j+5)E (to)+s%j5, and assuming
without loss of generality that E (¢5) = 0 and therefore E (t2) = V (¢y), we have that
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We are interested in the [V+4,V+4] component of M~!, whith ¢torresponds to

NVar (43). Now,
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Thus, the [V+4,V+4] component of M~ is




If we follow Lachin’s approach (Lachin, 2000), instead of using the asymptotic

variance use the variance of B conditional on the covariates, which is
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Then, we would take the expected value of the non-centrality parameter under

so that the test statistic is still
T =

the alternative hypothesis over the distribution of X;, i.e. we would compute
E [T?|H,]. If we assume that everyone is observed at the same set of time points

(V(to) = 0), then the only random covariate is exposure and we have
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and the [4,4] component of the inverse is
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Following the same steps as in Appendix A.1.1 we can derive that
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The non-centrality parameter with the approach we followed in the paper is

N~3s* det(A)pe (1 — pe)
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so thereis only a ((— ~) (orrection compared with the one obtained with Lachin’s

method.
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A.1.3 Proof that NVar(n;) = c'¥pc = i = dia) under
model (2.9).
From model (2.9), we have
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and we can deduce using the following results derived in appendices 1.1 and 1.

i.e.
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The [6,6] component of the inverse of this matrix is

Ee)l

pe(1 — pd)s? det(A)’
as we derived in Appendix A.1.2 for the LDD case with V' (¢,) = 0.

cYpc =

A.1.4 Proof that s\, = s and sV ar (Al) = Var (1;) from models
(2.9) and (2.10)

The GLS estimator has the expression

N

LN
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where X is the matrix of covariates for participant i. To derive 7j; from model (2.9)

we only need the sixth row of
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which we denote
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and then

Then, by calling

we have

In Appendix A.1.3 we derived and expression for

N
el
i=1

and from that we can derive
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X =
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For convenience, some terms can be rewritten in vector form. We define 1 as a
(r+1) x 1 vector of ones, and t as a (r + 1) x 1 matrix such thatt’ = (0,1,2,...,r),
and then

1

(Z (‘2 X) = det(AJp.(1—po)s

pt’E7'1, 0, Z1'®7'1, —t'27'1, 0, %1’2‘11)(
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We can also derive
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Now let us move to model (2.10). Define the  x (r + 1) matrix
1 1 0 - -0
o -1.1 0 --- 0
A = o 0 . oo i |
0 v oo 0 -1 1
Note that AY; contains the differences of the response from one visit to the next,
so AY, is the response variable in model (2.10). The covariance matrix of the

response for model (2.10) will then be AXA’. Let us call Z the » x 2 matrix of

covariates for model (2.10),

and X3¢ a (r + 1) x 2 matrix containing the third and sixth column of X; from

model (2.9),
, . sj sr
X6 = (G k;sj k;sr ) ‘
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Then, it can be noted that %AX[%] = 7. Therefore, the GLS estimate of \; can be

written as
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Now, by property B.3.5 of Seber (1984, page 536),
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and with some algebra this expression equals
(1'=""1)
det(A)
So

a B (rs'1)

/ / n—1 . .
Zl [376]A (AEA) AX[3,6]> - pe(l —pe)82 det(A) ( Pe 1 ) (
- 3

Now we need to derive X';3 g A’ (AXA’) A, and by using Seber’s property again

we have
-1
X,[376]A/ (AEA/) A = X/[?),ﬁ} (E_l - 2_11 <1,E_11> 1/2_1) .

So,

N

-1
cr =35 [ (Z ‘A (AZA)T Ax[gﬁ]) } X'z A (ATA) A =

= i
(1'z7'1)

— det(A)spe(l — o) ( —pe 1 )C,[:Sﬁ] (é—l -y 1 (1’2—11> -1 1’2—1) (
_ det&)i(llz ) ( —pe 1 ) ( ot/ ) ()él -y 11 (1/211)—1 1’21) (
(—pe+ ki) (VB0) (L (1) et
- dit:&)pe((l—Pe) )t ()é = <<2 1> o ><

and we can observe that ¢y, = %’ and therefore s)\; = s and s2Var <5\1) 6 Var ().

A.2 Bias and/or inefficiency of the ANCOVA and
SLAIN tests in observational studies

Frison and Pocock (1992, 1997) considered general tests of the form

_ Npe<1 _pe) (S’l - 50)2

T
cXc ’

where S, is exposure group k 's mean, k = (0,1), of a summary measure, S;, that

is a linear combination of the repeated measures of each subject, S; = c'Y,. The
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vector ¢’ defines the summary measures, which could be, for example, the within-
subject mean of the repeated measures, the within-subject slope, or ANCOVA,

SLANC and SLAIN . Let nj be the number of participants in exposure group k.

Then,
S'k Z'leg =c _IF C/Yka

= =c
3" \ N

where [ {k; = k} is an indicator variable that takes the value‘one when k; = k and
zero otherwise, and Y}, is the (7 + 1) x 1 vector of sample means for each time in

group k. Thus,
Npe(1 —pe) ((]/ (Yl - Y0))2

cd{c

Clearly, E [S’k} = ¢y, where 1, is the vector of true means for each time in group

k,and E [S; — So| = (11 — po). If ¢/ = ( [, -+, =7 ), we are testing the equality
of the means of the two groups. Frison and Pocock (1992, 1997) found the vector

T =

¢’ so that E (T'|H,) = 0 (valid) and for which the power of 7' is at its maximum
possible under H 4 (efficient). They found that the optimal vector ¢’ is proportional
to (1 — 1o)X "', The resulting optimal test to detect a group difference under the
CMD hypothesis in clinical trials was called ”ANCOVA”, and under CS covariance
it has ¢’ = (£p,1,---,1) (Frison and Pocock, 1992, 1997). The resulting optimal
test under thILDD hypotl(esis in clinical trials was called "SLAIN”, and under CS
covariance it has
¢ — 125 4+ 6pr(2j —r — 1)
r(r+1)[pr(r—1)+2(2r+1)]

,7=0,...,r

(Frison and Pocock, 1997). They also noted that their proof is similar to a GLS
result (Frison and Pocock, 1997). Actually, since the GLS estimator is the best linear
unbiased estimate of the parameter of a model, the test based on the GLS estimator
of a model that correctly characterizes the shape of the differences between the
exposed and the unexposed over time will be the optimal test. We next derive

what is the underlying model of YANCOVA” and “SLAIN".
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Under the CMD hypothesis in clinical trials, the difference vector (;; — po) is as-
sumed to be proportional to (0,1,...,1) (Frison and Pocock, 1992), i.e. there is
no difference at baseline, due to randomization, but there is a constant difference

afterwards. This situation can be characterized by the following model:
E (Yy|Xi;) = B+ Bl {j > 0} + o {j > O} K, (A.2)

where f3, is the post-baseline difference between the two groups. The GLS estima-

tor of the coefficients is
N -1 N N -1
> ’iE‘lXZ) ZX’iE‘lYZ) Z Z ) X 2y,
=1 i=1 =1

The estimator of the parameter of interest is
N N -1
= > X’i21Xi) Xz <Yi \
i=1

=1 1

where the subscript [3] refers to the third row of the matrix. We have

—_

S

C L (
N .. 00 .
> KZXi= Z 1 1 P SR
i=1 0 k’L ttt UO’I‘ . e U’I’T . : :
1 1 k <
(Z ;i (
7=0/=0
=N| X v Z(Z ,
i—0f=1 j=1f=1
Z 2 jj’ De > jj

Vs
§=0 ‘/:1 j=1 j=1f'=1
T T

where v, is the (7, j')th element of X7, Let us call a; = Z Vjjr, a2 =y, Y Vjjr
J=0"=0 j=04/=1

DNIEINNE

<

[

1
and a3 = Z ;. Then, the third row of é C »1X; )

=1f'= 1
-1
7 (I=peaz’  pe(l- pe) :
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We also have that

X2t = > Ujo > P

So, we can deduce

N —1
[<Z ’iz—lxi> X/,
=1

=] =
e
ae
&

<

™~
&

[en}
N~
|
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+
T
N—
VRS
e
3
g
=

So, the ¢’ vector is

é é@jo)(..., é ilﬂjr> ><

The inverse of a CS matrix has diagonal elements

1 1+4p(r—2)—p*(r—1)
o2 (1=p)2(1+rp)
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and off-diagonal elements
1 —p
o*(1=p)(L+rp)
(Graybill, 1983, theorem 8.3.4). Then, under CS,

" ZZ(”" TRt

j=1 j'=1

r

_ —p
20 = = )i+ 7)

j=1
and )
= L =1,...,7
2. = gy T
Therefore, (3, = (Fp. % ... L) (Y1—Y)) and we can see that we get the
same vector ¢/ = (

—p,%,---, 1) fhat Frison and Pocock (1992) derived for their
“ANCOVA” analysis under CS.

Under the LDD hypothesis in clinical trials, the difference vector (11 — po) is as-
sumed to be proportional to (0, 1,2, ...,r),i.e. thereis no difference at baseline, due
to randomization, and afterwards the difference between the two groups changes

linearly with time. This situation can be characterized by the following model:
E (Yij|Xij) = Bty + Bokit, (A.3)

where (3, is the difference in the rates of change in the two groups. The estimator

of the parameter of interest is
N

N -1
=Y ZX’,-E‘lxi) X2y, <
=1

=1 13
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where the subscript [2] refers to the second row of the matrix. We have

0
N N 0 j , 00
§ : I =1y § : : .. ; a7
. 612 X’L - ( O kz] k‘ﬂ’ ) . . k’b]

i=1 Vor **° Upp
r k;r
r

> > vy
=N j:?'j/:g r r
e Z(Z i S [ iy
j=0}’=0 j=0}’=0

where v is the (j, j')th element of 3~ !. Then,

N —1
Z /-E—1X.> = 1 <<pe Pe )
g 4 LI Ve 1 '
i=1 Npe(1—pe) > JJ'vj P
j=0f"=0

We can also derive X’;X L. The j’th term (5’ = 0,...,7 ) in the first row of X/; 3!
has the form > fv;;;, and the j’th term (5 = 0,...,r ) in the second row of X’; 37!
i=0

has the form k; <vjj/. Thus, the j’'th term ( =0,...,7)in
=0

N —1
Z X’iE‘lXZ) X/ 5!

has the expression
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17’ ; —pe Y jujyr + kiZjvjj/> (
=0 =0

7=0p’'=0
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Then,
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Npe(l—pe) > (J vjjr =1 j'=0
0
1

J=03"
= T
2 J'vjj

||Mﬁ

% ([{k’ O} Y;j’) r r

£ 8 50 £ )

So, the j'th component of the ¢’ vector is

<
<

Under CS,
(o= s [ () B
“ AT lj'“”p)‘wu
and

r(r+ D@2 +r(@d+ (r—1)p))
ZZ]J Ujjr = 120%2(1 — p) (1 +7rp)

Jj=0 5/=0

Therefore, j'th component of the ¢’ vector is

120 @) =2 (i (g — - 1)
DA+ =Dp) i+ Der(r =1 +2(2r 1)
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which is the expression that Frison and Pocock (1997) derived for CS.

In this paper we deal with observational studies, where the exposed and the un-
exposed already have a different expected value of the response at baseline. The
CMD hypothesis in observational studies specifies that the mean group differences
are constant over time, i.e. they are proportional to (1,...,1). The mean differ-
ence between the two groups is constant at all time points and equal to p; s,
ie. (u1 — po) = pipoo- The parameter of interest under CMD is p;, and one
wants to test Hy : py = 0vs. Hy : p1 # 0. Under the CMD hypothesis for ob-
servational studies, the “ANCOVA” model is still unbiased under the null. We
have ]E[ (Y1 - Yyl HO] =cE [(?1 —Y)| HO] = c’( 1H00s 5 P1Mo0 ) Since
pp =0 u(der Hy, we have E [¢/(Y; — Yo)| Ho (= 0 fo(f any ¢/, and any Ve(tor c
produces unbiased estimators under the null. 1(1(3 optimal test is proportional to
(1 — p0)X~" (Frison and Pocock, 1997), so in an observational study it is propor-
tional to (1,...,1)X"'. Since ANCOVA is proportional to (0,1,...,1) X!, itis not

the optimal test for CMD in observational studies.

The LDD hypothesis in observational studies specifies that the group mean differ-
ences are a linear function of time, but there is already a difference in the group

means at baseline. In that case,
P2p3
p — po = (p1 + — t5) Hoo-

The parameter of interest under LDD is p;, and one wants to test H, : p3 = 0 vs.

H, : p3 # 0. We have,

:C,

E [((Yl — o) Ho| = ¢'E[(¥1 — Yo)| Ho) g
)

(pl + p27_p3t0)/1’007 e , (pl + @tT)/*LO e C/ ( pl/’LOOJ e 7p1,u00 )/

0:p3=0

= prpooc’ (1,.. ., 1)/ .

So, if there are differences at baseline, i.e. p; # 0, a test will be unbiased if and only

if the sum of the components of ¢’ is zero. For "SLAIN”, the j'th component of ¢’
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is .

J UJJ

/=0j=0

so the test will be unbiased under the null if and only if )" " fv,;; = 0. This will
not be true in general. For example, under CS,

Z Z jU 7" + 1)

e i’ 202 (14+rp)

Therefore, “"SLAIN" is biased in observational studies.

A.3 Proof that two-stage and GLS are equivalent ap-
proaches under CS or RS for V (ty) =0

In the setting where all subjects are observed at the same set of time points, this

appendix will proof:

(i) That the estimator of the difference of the rates of change in the two exposure
groups obtained using the summary measure (two-stage) approach is alge-
braically equivalent to the estimator of 5 obtained from fitting model (2.6)

by OLS.

(ii) That when the covariance matrix 3; = X has a CS or RS structure, the esti-
mators from model (2.6) obtained by OLS and GLS are algebraically equiv-
alent. Given (i), this implies that the estimator from the summary measure
approach is algebraically equivalent to the GLS estimator. We also show that
this is not the case for DEX.

Given (i) and (ii), since the estimators from the summary measure (two-stage) ap-

proach, and GLS are the same linear combination of (Y; — Yj),d’' (Y1 — Y,), once
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we assume a covariance structure for Var [Y;|X;] = ¥;, the test statistic for the two

methods is also equivalent and equal to
& (¥, - Y)

T —
VVar (@ (Y- %))

Y

where

Var (d/ (Yl - YQ)) d/VCL’I" (Yl - Yo) d
d'xd

1 1
—d Y., - Y- - =
(Npevar( ki=1) + N(1 —m)var( ki 0)> é Npe(1 —p.)

Proof of (i)

Summary measure (two-stage) approach

Let Z; be a (r+1) x 2 matrix that contains a column of ones and the column of times
for participant i. Since all subjects are observed at the same set of time points then
Z; = Z. Here, the summary measure is the subject-specific OLS slope associated
with time from the regression of Y, on Z, = Z. Let us call @-, 1 =1,...,N, the
(2 x 1) vector containing the subject-specific intercept and slope of the regression,
where 3; = (Z'Z)"" Z'Y;. The subject-specific intercepts and slopes are averaged

in each exposure group as follows,

N N

> (Z’Z)_l Z'Y; I {ki =k} > Yl {k; =k}

i=1 _ (le)—l 7/ =1 = (Z’Z)_1 7Y,
(% N

A~

ﬁk: \

where I {k; = k} is an indicator variable that takes the value one when k; = k and
zero otherwise; n;, is the number of participants in exposure group k, £ = 0, 1; and
Y, is the average of Y; in group k. Since we are interested in the second component

of (3, the slope associated with time, we define S, = (z AR/ zf(\é Y, where the

)

subscript (2) indicates the second row of the matrix (Z’ Z) ' Z'. We are interested

in the difference, which is (5’1 — 50) = ((f’Z)l Z,)(z) (Yl — YO).

24



OLS approach

With the OLS approach, we fit all the data at the same time, using
E (Y5 Xi5) = 70 + nitij + v2ki + 73 (8 X Fi)
and our interest in on 73. Reparameterizing, we can fit model
E (Y| Xi5) =70 (1= ki) + 1 (1 = ki) by + yaki + v3kitij,

and our parameter of interest is now v3 = 75 — ;. The OLS estimator of the latter

model can be derived as

N -1 N
= (X’X)f1 XY = ZX’ZX2> Z /in') (
i=1 i=1

where X is the covariate matrix for subject i and can be writtenas X; = ( Z 0 ) (

if participant i is unexposed and X; = ( 0 Z ) (fzexposed. Then,

i % N(1—p.)Z 0
2 (i 0 NpZ'Z )’

N -1 1 ! -1
Z i X L T (2/2) | 1
— N 0 (Z'Z)”

L
Pe

i(&Y) = ( %/ ) <§;Y,~I{ki :o}) + ( g, ) (iYi[{ki = 1}) (
i = :_( N(zlv_ %e,)‘_?’% ) (
De 1

SO

([ (Z'Z)7Z'Y,
(2'Z)'2'Y,

To compute 73 = 45 —7; we need to subtract the second from the fourth component,

S0 j3 = (((Z’Z)1 Z') 5, (Y1 —Yo) as in the two-stage approach.

25



Proof of (ii)

A necessary and sufficient condition for the OLS and GLS estimators to be the
same is HV = VH (Puntanen and Styan, 1989, condition Z5), where H is the hat
matrix H = X(X'X)"'X’, X is our case the N(r + 1) x 4 matrix of covariates based
on model (2.6), and V is the N(r + 1) x N(r + 1) covariance matrix of Y, which
is a block-diagonal matrix with the diagonal blocks equal to . As in the OLS

derivation, we reparameterize the model as

E (Vi Xij) =76 (L= ki) + 91 (1= ki) tig + ki + 23kt
and for convenience we sort X sot that the first N(1 — p.) participants are unex-
posed and therefore have X; = ( Z 0 ),/and the following Np, are exposed and
haveX; = (0 Z ).(As derived in the O

1 L (z'z)™" 1]
X'X) 1= —  (-pe)
(XX) N 0 L(z'2)"

case,

Then, it can be derived that

I (H 0’
H:XX/X —1X/:_ 11
(X'X) N ( 0 Hyp

where Hy; is a block matrix of N (1 —p.) x N(1 —p.) blocks, each block being equal
to %mz (Z’Z)_1 Z'; and H,, is a block matrix with Np. x Np,. blocks, each block
being equal to ple (Z'Z)"' Z'. Since V is block diagonal with the diagonal blocks
equal to %, it follows that HV is going to be of the form

- (ol )

where (HV),, is a block matrix of N(1 — p.) x N(1 — p.) blocks, each block being
equal to lf—lpez (Z'Z)"'Z'%; and (HV),, is a block matrix with Np, x Np, blocks,
each block being equal to pieZ (Z'Z)"' Z'%. Similarly, we can derive that VH is of

VH = % < (Vi (V(I){’)m ) (
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where (VH),, is a block matrix of N(1 — p.) x N(1 — p.) blocks, each block being
equal to 17—1}7622 (Z'Z)~" Z/; and (VH),, is a block matrix with Np, x Np, blocks,
each block being equal to pieEZ (Z'Z)~"' Z'. Clearly, then, proving that HV = VH
is equivalent to proving that Z (Z'Z) ' Z'S = XZ (Z'Z) " Z'.

Next, we show that the Z (Z'Z) ' Z'S = £7Z (Z'Z)"" Z holds for = having a CS or
RS structure and therefore the OLS and GLS estimators are algebraically equivalent

in those cases. We also show that the condition does not hold for DEX.
CS

Under CS, ¥ = 0% (p11' + (1 — p)I), where Lis the (r + 1) x (r + 1) identity matrix

and 1 a (r + 1) x 1 vector of ones. Then,
Z(Z'2)"' 7S = 0*Z(Z'Z)" 2/ (p11' + (1 — p)I)
= 0*pZ (Z'Z)" 711 + 0*(1 — p)Z (Z'Z)"" 7.
Since Z (Z'Z)~" Z' is a projection matrix in the subspace defined by columns of Z,

and the first column of Zis 1, then Z (Z'Z) "' Z'1 = 1and Z (Z'Z) ' Z'% = 2p11' +

0*(1 — p)Z (Z'Z)"' Z'. Now, we derive an expression for

$Z(Z'Z)'Z = (11 + (1 - p)Z(Z'Z)"' Z

— o2 p11VZ(Z'Z2) "2 +0*(1 — p)Z(Z'Z)" Z'.

For the same reasoning used above, 1'Z(Z'Z)'Z = 1/, and therefore
$Z(Z'Z)" 7' = 0*p11' + 0*(1 — p)Z (Z'Z)"" Z', which is the same expression we
derived for Z (Z'Z) ' Z'%.
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RS

Under RS, ¥ = ZDZ' + 021. Then,

7(27)"' 72 =7(Z27)"7 (t)DZ’ +021)

—7Z(2'2)' ZVZNZ + o2 Z (ZQZ)‘1 7' =1IDZ + 0’7 (Z'2)' 7.

Now, we derive an expression for
XZ(Z'Z)"'7Z = (4DZ + 1) .(Z'Z) ' Z' = ZDZ + 0> Z (Z'Z) ' Z,

which is the same expression we derived for Z (Z'Z) ' Z'%.

DEX

A counterexample is enough to show that Z (Z'Z) ' Z'S = £Z (Z'Z) " Z' does not
hold for DEX. With r = 2 then

5/6 1/3 —1/6
7(Z27)'72 = 1/3 1/3 1/3
~1/6 1/3 5/6

If we take 02 = 1, p = 0.8 and # = 1 (AR(1) covariance structure) then

1 08 0.64

Y= g 1 08
0.64 08 1

Now,
5/6 1/3 —1/6 1 08 0.64
Z(Z7)'zx =1 1/3 1/3 1/3 8 1 08
(—1/6 1/3  5/6 0.64 0.8 1 (
0.993\ 0.866 0.633

= 813 0.866 0.813
0.633 0.866 0.993 (
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and

1 08 0.64 5/6 1/3 —1/6
EZ(Z’Z)lz’( 8 1 0.8) 1/3 1/3 1/3)
6)0.64 08 1 <—1/6 1/3 5/6 (

(0.993 0.813 0.633)

0.866 0.866 0.866
0.633 0.813 0.993

We can see that the the [2,1], [1,2], [3,2] and [2,3] components differ, so the condition
does not hold.

A.4 Proof that ¢’Xpc is the same forr = 1 and r = 2
under LDD and V (t;) = 0 with fixed follow-up pe-
riod 7 and equidistant time points.

When V' (ty) = 0, formula (3.4) is

cYpc =

Pe(l —pe)r2 det(A)’

where the term v;; is the [j, j'] component of the inverse of ¥ and

Let

the covariance matrix when r = 1 and

011 O1,7/2 O1,r
Yo = 1,7/2 Or/2r/2 Or/2.1
<01,T UT/Q,T Orr (
when r = 2. Then, ¢’Ygc will be the same for » = 1 and r = 2 if and only if

AL 4A,L ]
det(Al) N det(Ag) ’
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where A, is the A matrix when » = 1 and A, is the A matrix when r = 2. We can

now derive

and

3=

2 2 2
_201770177/207/277 + 01,:07/2,7/2 + 0—177/207',7' + o (0—7/277 - JT/2,T/207,T> (

2
UT/Z,T — 07/2,7/207,r

2
01,7/207,7 - Ul,TUT/Q,T 0-177- — 0110+ r (
2

<71,TUT/2,T/2 — 01,7/207/2,r O01107/21 — 01,701,7/2 01,7/2 — 0110+7/2,7/2

Also,

A _ 1 11 Orr —01r 0
e 0110+ —O‘%T 01 —O01r 011 11

- 1 o11 — 2017 + 07y O11 — 017
0110, — 0%, 011 — 017 o1

1

det(Al) = 3
0110+ — 07,
and
Al[la ]-]
T A N -2 T T
det(Ay) ‘T ow e
and
1
A2 ==

_201,701,7/207/2,7 + 0%7707/2,7/2 + U%’T/QO’T,T + 011 <O-72—/2’7— - UT/Q,T/QUT,T> (
1 11
01 2

2
01,7/20r7 — 01707/2,1 01, — 011077
2
L707/2,7/2 = O1,7/207/27 O1107/27 = 01701,r/2 01 1/ = O1107/2,r/2

It can be derived that
AZ[L 1] _ 1

det(AZ) B o1+ 20_1,7’ —4 (0177/2 + Orj2,r — UT/2,T/2> CO-T,T

{<U%,T - (01,7/2 - 07/2’7)2 + 201’T <01’T/2 +

—_

2
UT/Q,T — 07/2,7/207,r

[y
N = O
/N

T/2,7 07/2,7/2)

(07/2,T/2 — 201,7/2) Orr + 011 (C(T/z,T/z + o7 — 207/2,7) (
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Then,
AL 4AL[L ]
det( 1) N det(Ag)

if and only if

4

o1 + 201,7 -4 (O-l,T/Q + UT/Q,T - 0-7'/2,7/2) + Orr

{{U%ﬂ— - (01,7/2 - 0-7'/2,7-)2 + 201,7 (017T/2 + 0-7'/2,7' - 07/2,7'/2)

o1 — 201, + 07 =

(07/2,7/2 - 201,7/2) Orr + o011 ( T/2,7/2 + Orr — 07/2,7) 7<

which with some algebra it reduces to 01y — 0, = 2 (01,2 — 0, /277). So, ¢'Ypc
will be the same for » = 1 and r = 2 if and only if 01y — 0., = 2 (0177 — 0'7—/277-).
We can check that for the covariance structures used in the paper, i.e. compound
symmetry (CS) (section 3.2), damped exponential (DEX) (section 3.3) and random
intercepts and slopes (RS) (section 3.4) this condition is met. For CS,
o1 O17/2  Oir L pp
3y = Lr/2 Or/2,7/2 Orj27 =0’ L p
01,7 Or/2,7 Orr P p 1
so 011 — 0rr = 02 (1=1) = 0and 2 (01,2 — 072-) (= 20%(p — p) = 0 and the
condition holds. For DEX,
011 O1,7/2 O1,r L p er
o= | |02 Orjorpe Orpr | =0 p 1 p
O1,7 Or/2,7 Orr p29 1Y 1
50 011 — 07 = 0% (1=1) = 0 and 2 (01,2 — 072-) (= 20%(p — p) = 0 and the
condition holds. For RS,
011 O1,7/2 01,7
Yy = O17/2 Or/27/2 Or/2r

01,7 O-T/Q,T Orr

2 2
2 %o + 7w 2 2 2
0260 T Pbob10bo T T jaln + 20606, T, 0, ng ) ) ) ’
Thy + 2Pbyby Oby Oy Tho ~+ 3Pbyby Ty Oby +20b1 Tho +4O’b1 + 4pvob, Oby O, + 05

SO

_ 2 2 2 2 2 _ 4.2
011 — Orr = Oy, + 0y, — 0 — 40y — 4Puoby Ob 06, — T4 = =403 — 4Pugby Oy Oy
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and
2 (01,7/2 — UT/2,T) =2 ((Za + Pbob1 OOty — 0130 — 3Pbob Ty Oty — 20;31) (
= —40’?1 4,01)0(310'1)00'()1

and the condition holds.

A.5 Effect of p. onr when X, = X

When ¥; = ¥ Vi, we can use equations (3.2) and (3.4) to write

N — (c'Spe) (2 + Zl—a/2)2 _ )

(c/Bp,)? Pe(l _pe>7

where f(r) depends on r but not on p.. We can define r implicitly as the value/s

solving the equation F'(r) = 0, where

f(r)

F(T) =N pe(l _pe)‘

Implicitly differentiating both sides of F'(r) = 0, we obtain

OF(r) 0o or  f(r)(1—2p.)
ape ape f/(r)pe(l - pe) ‘
The value of p, that minimizes r solves 88—12 = 0, and results in a single root, p. = 0.5.

Since (1 — 2p.) > 0 for p. < 0.5 and less than zero for p. > 0.5, » has a maximum

;e/((:)) determines whether it is a maximum

or a minimum. Since the variance ¢’Ygc is always positive so is f(r), and since

the variance decreases as r increases, f'(r) is negative. Therefore % is negative

and % < 0 for p. < 0.5 and % > 0 for p. > 0.5, implying that r is minimum at

p. = 0.5.

or a minimum at p. = 0.5. The sign of
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A.6 When is there a limit to power less than 100% as
r — 00?

A.6.1 CMD and CS

The inverse of a CS matrix has diagonal elements

1 1+p(r=2)—p*(r—1)
o> (1—=p)2(1+rp)

and off-diagonal elements
1 —p

o® (1 =p)(1+rp)
(Graybill, 1983, theorem 8.3.4). The sum of a row or a column of the inverse,

r

Z(JJ" is
i<1+p(r—2)—p2(r—1)_ rp ) 1
A\ A0 G-p )it

and therefore

+1
ZZUJJ - 02T1+Tp)

Jj=0 j'=0
Also,
r(r+1)
Vi = Jj Vi) = ———,
Jzogzo< i Z Z 7 207 (T4 1p)
and
e 120'2(1 —p) (L+7p)
Then,
2
T T T ' ' T T 7"(7"~|» 1)2(T+2)
det(A) = > > W) > Z(J/%) -2 Z(”ﬂ'ﬂ") T 12000 = p) (Lt rp)
§=0 j/=0 §=0 j/=0 §=0 j/=0

Plugging in these expressions in to equation (3.2), we have that under CMD and

CS

a?(L+7rp) (r(r+2)(1+rp)s* + 12(1 — p)V (to))
Pe(1 —pe)(r+1) (F((T +2)(1+rp)s> +12(1 — p) (1 — p2,,) V (to))

33

cYpc =



Then, by comparing the highest order terms of r in the numerator and denomina-

tor of ¢’Xpc, we can derive that

lim ¢’3gc = lim o*(1+7p) (r(r+2)(1+17p)s?) _

r—00 r—o0 Pe(l —pe)(r+ 1) (r(r+2)(1 +17p)s?)
O e o) B
r—00 pe(l - pe)(r + 1) pe(l — pe)

Since under CS, the covariance matrix of the response, X, does not depend on s or

7, the results apply to both the fixed s and fixed 7 design problems.

A.6.2 LDD and CS

Applying the results of Appendix A.6.1 to equation (3.4), we find that
126%(1 = p) (1 = rp)
pe(1 = pe)(r + 1) (}F(:’ +2)(1+7p)s? +12(1 = p) EK— Pii) V(to))

Since the denominator is a pol

cYpc =

omial of fourth degree of r while the numerator

is of first degree, then lim c¢'Ygc = 0.

r—00

Since under CS, the covariance matrix of the response, 33, does not depend on s or

7, the results apply to both the fixed s and fixed 7 design problems.

A.6.3 CMD and AR(1)

A.6.3.1 When s is fixed

The AR(1) covariance matrix is given by (3.8) with § = 1, and its inverse is a tridi-

agonal matrix with the form

1 —p 0 0 0
_ps 1 +p2$ _ps 0 0
-1 1 0 —p° 1+p* ' 5
(1_p25)0-2 0 O _ps O
: _ps 1‘|—P2$ ps
(0 0 0  —p° 1 (



7=04'=0

(Graybill, 1983, page 201). To use equation (3.2) we need expressions for ) > </jj/,

zrj ZT: <vjj/ and zrj zT: (j’vjj/. It can be easily shown that

J=075"=0 j=0;'=0
Sy = s
17 0_2 1 _|_p) .

j=0 j'=0
Also,
o r(=p) (A +r(1=p°)+p°)
szvjj'_ 25\ 2
— 2(1—p*»)o
7=0 j'=0
and

r s 2s 2s 2 s\2
OZC%>%7rﬁ%ﬂt@+p+wufwcwum»
When V (ty) = 0, we can use formula (3.3) to find

o*(1+ p°)
Pe(l = pe)(1 4714 p* —1p*)

as given by Table 1. This formula has a first-order polynomial in 7 in the denom-

C,EBC =

inator, and has no terms involving r in the numerator, so lim c¢'YXgc = 0. If
V (to) > 0, the formula is very long ¢'Yzc and we used Mathematica (Wolfram
Research Inc., 2005) to obtain the formula and compute the limit, which was zero.

Therefore, lim ¢’YXgc = 0 when V (¢y) > 0.

A.6.3.2 When 7 is fixed

When 7 is fixed, we substitute s with 7/r in equation (3.2). So, when V' () = 0,

0.2(1 + pT/T‘)
Pt —1p )

cYpc =

and

2 1 /7
lim cXgc = lim o (1+p7) )
r—oo r—oo pe(l - pe) [1 + pT/r + T(l - pr/r)]

By 'Hopital’s rule, lim (1 — p™/") = —7log p, and then

2 2
lim cXpe = o )
r—oo Pe(l — pe) [2 — 7 log p]
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If V (ty) > 0, we used Mathematica (Wolfram Research Inc., 2005) to derive the

limit, which in this case has a very complicated expression,

202 ((( + 12V (t)7) (log(p))® — 6 (7% + 4V (t)) log(p) + 127) (
[Pe(1 — pe)(2 — T log(p))]
{( 12V (t0)7) Cog(p»? 12V (1) (7 o8(p) — 2)62., log(p)

—6(T*+4V(to)) (g(p) + 127}_

A.6.4 LDD and AR(1)

A.6.4.1 When s is fixed

Using the results from Appendix A.6.3 and applying formula (3.4) to the case
V (to) = 0, we find that

1202 (1 — p*) [r s*pe(1 — pe)]_1
(24 r(r—+3)+8p*—2r2p° + (r — 2)(r — 1)p>)

cYpc =

as shown in Table 1. Since the denominator is a second degree polynomial of r
while the numerator has no terms involving r, lim ¢3gc = 0. If V (¢y) > 0, we

used Mathematica (Wolfram Research Inc., 2005) and found that the limit was also

zero.

A.6.4.2 When 7 is fixed

When 7 is fixed, we substitute s with 7/r. So, when V' (t5) = 0,

1202 (1 — p*/") 1 [72p(1 — pe)]

(24 7(r+3) 4+ 8p7/m — 2r2p7/m + (1 — 2)(r — 1)p?7/7)’

cYpec =

as shown in Table 1. This expression can be rewritten as

12021 — /) pu(1 — po)]”
P [r (L= g7/ 4 (31— p2rin) + L2+ 80777 + 227
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Then, to compute lim ¢’Ypc we note that the limit of the numerator is

1202 lim (1—p?"/") = 0. In the denominator, the limit of last two terms is zero, and
I"'Hopital’s rule can be used to show that the limit of the first term is also zero. We
repeatedly applied 1'Hopital’s rule to derive the limit of ¢’>gc. With much algebra,

we found that

2402 log p

lim c¥pc = o
e pe(1 —pe) [—127 + 6721log p — 73 (log p)°]

If V (tp) > 0, using the expression derived for fixed s and substituting s by 7/r, we

used Mathematica (Wolfram Research Inc., 2005) to derive the limit, which has a

complicated expression,

2402 log(p) [pe(1 — pe)]

{{ (( 12V (t0)7) COgW 19V (1) (rlog(p) — 2)77, loa(p)
+6 (7( AV (t)) (og(p) _ 127}_
A.6.5 CMD,RSand V(ty) =0

We only find the limit of ¢’Yc when V(t;) = 0. The covariance matrix of the
repeated measurements is 3; = Z;DZ’; + 021, and since V(ty) = 0, Z; = Z and
3, =¥ = ZDZ + 021. The matrix Z is (r + 1) x 2 and contains a column of ones

and the column of times (sj,j = 0,...,r). Note that formula (3.2) depends on




where det (A) 6 s>det(A). Then, A = Z'S7'Z = 7/ (ZDZ' + 021)"' Z. Using the
property

(GBG'+C)'=C'-C'G(B'+G@C'G)'G'C,

which can be found in (Timm, 2002, property 8, page 46), we have that

1 1 1 N1
(ZDZ' + o21) "' = S 1— — 1Z (D1 + Z’—21Z) Z'1—
O-’LU

o2 g2 o2
= %I — %z (D‘l + %z’z) B yA
Now,
Z' (ZDZ' +o21)"' Z
_ U_laz 7 — Ulwz z (D—1 + %z’z) 2z

and using the property

-1

G'-G'(G'+B )G =(G+B)"

(Timm, 2002, property 6, page 46),

A=7 (ZDZ’ o21) "
1 1 -1

2-++4r —6 9 -1
— U?U (T’+1l(6r+2) 5(7“+11)2(r+2) + ( Ty ,Obob102b00b1 ) '
s(r+1)(r+2)  s2r(r+1)(r+2) Pbob1 Oby T by Oy,

We computed this inverse with Mathematica (Wolfram Research Inc., 2005), and

~1
~ 77 (D—l n LQZ'z) 7'7 — ((z’z)‘1 o2+ D)
O—'LU

then by substituting s*det(A) by det (A) <nto equation (3.3), we found c'XYgc,

which is
2 2
0_2 2(2r+1)o 120 —(gar — 60y,
ot 2+3r+2 r3+3r2+2r )s? 01 (r2+3r+2)s

_% ( ( ) (
e De 1 (r3+43r2+2r)s?
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The limit of this expression is
pe(l - pe)O-Q

The same result is obtained when 7 is fixed. This limit can be rewritten as

hm CIEBC — Ugopt() (1 - p(2)1>
r—oo pe(l _pe)

When V' (ty) > 0 and the covariance follows RS, the full distribution of (k,) is
needed and numerical integration needs to be performed (Appendix A.8). Thus,

general results about the limit of ¢'Ypc as r — oo cannot be obtained.

A.6.6 LDD, RS and V(t)) =0

When V(ty) = 0, using equation (3.4), we can derive c¢’3gc by substituting

s* det(A) by det (A) o obtain, in terms of our parameterization,

¢'Ype = (1822;28 :;:O))) (((r n 11)(7‘ +2) " (1 fblpbl) (r+ 1;(7: + 2)) <

as in Table 1. Then,
lim cXgec = (¥202(1 _pto)) (/ths,f

oo %2]?@(1 — De) l\— Pb1,si> E(f

and, equivalently when 7 is fixed, the limit is

(?;8 ) ((fhlp’;) Qf D2

When V' (ty) > 0 and the covariance follows RS, the full distribution of (k,?) is

_|_
—_
~—
—~
It
_|_
[\
~—

il

needed and numerical integration needs to be performed (Appendix A.8). Thus,

general results about the limit of ¢'Ypc as r — oo cannot be obtained.

39



A.7 The effect of covariance parameters on the mini-
mum r for a fixed N, subject to power 7

A.7.1 The effect of p and p;,

A.71.1 CMD,CS, V() =0

From equation (3.6),
L BNRO—p) = (b ap)’e?
(2 + 21-0/2) " 0%p = BN pe(L — pe)

Differentiating with respect to p, we get

or (Z7T + Zl—a/2)2 o? <_ﬁ22Npe(1 - pe) + (Z7r + Zl—a/2)2 U2>
— = 5 .
dp ((f;wL 21ays)’ 02p — B2N po(1 — pe)>

If (2, + zl_a/2)2 o2 > 32N pX1 — p,.), then g—; > 0, so r increases as p increases. If

(2 + Z1_a/2)2 02 < 32N p.(1 — p,), then g—; < 0, so r decreases as p increases.

A.7.1.2 LDD, CS, fixed s, V(ty) =0

The minimum r for fixed N and fixed power, 7, solves

B 120%(1 — p) (z7r + zl,a/2)2
(I =pe) 827 (r+1)(r +2)°

which was obtained plugging in the corresponding value of ¢’Ygc in Table 1 into

equation (3.5). Defining

F(T p) _ nygpe(l _pe) 82 . (1 B p)
’ 1202 (Zﬂ + Zlfa/g)Q r (7“ + 1)(T + 2)’

the equation F (r, p) = 0 implicitly defines the function » = f(p). Using implicit
differentiation and taking into account that r is a function of p, r(p), we obtain

o —r(r+1)(r+2)
dp (1 —p)(3r2+6r +2)

Since r is positive, the derivative is always negative, and r decreases as p increases.
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A7.1.3 LDD,CS, fixed 7, V(t) =0

The minimum r for fixed N and fixed power, 7, solves

120%(1 — p) (2 + zl_a/2)2 r
'Vgpe(l - pe) T2 (T + 1)(T + 2>7

which was obtained plugging in the corresponding value of ¢’Ygc in Table 1 into

N =

equation (3.5). Defining

F ('F p) _ ny??pe(l _pe) TQ . (1 B p)T
’ 1202 (Zﬂ+217a/2)2 (71_'_ 1)(7‘4—2)7

the equation F'(r, p) = 0 implicitly defines the function r = f(p). Using implicit
differentiation and taking into account that r is a function of p, we obtain

or _ r(r+1)(r+2)
dp  (L—p)(=r2+2)

If r > 2, then g; < 0. So if we are taking at least two post-baseline measures,

larger values of p lead to smaller values of 7 to achieve the specified power. Since

T

D07y is the same for r = 1and r = 2, it is preferable to choose r = 1 since fewer

measurements need to be collected. Therefore, the choice betweenr = 1 and r = 2

is not affected by p.
A.7.14 LDD, RS, fixeds, V(ty) =0

The minimum r for fixed N and fixed power, 7, solves

2 (1262(1—ps,) [/ 1 Pby,s,7 1
(ZW + 21—0/2) ( 52 ‘ ) (f(r+1)(r+2) + (1—;;11,1737;) F(F+1)(F+2))

”nge 1— pe)

N =

Y

which was obtained by plugging in the corresponding value of ¢’Ypc in Table 1

into equation (3.5). Defining

F (Ta pto) =
N¥3pe(l — pe)s’ (1-p, (
1202 (Zﬂ- + Zlfa/g) ’

et (5555 et
kr—l—l )(r +2) 1—pysi) FF+D)F+2))
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the equation F'(r, p;,) = 0 implicitly defines the function r = f(p,,). Using implicit
differentiation and taking into account that  depends on p;,, we obtain

or  —r (r+1)(r+2)[py, s (r+1) (r +2) + (1 — po,e5) 7(F + 1) (7 + 2)]

= < 0.
Opr, (1 — poys.7) T(F+ 1)(T 4+ 2)(1 — py,) (3r2 + 61 + 2)

Since the derivative is always negative when r > 0, r decreases as p;, increases.
A.7.1.5 LDD,RS, fixed r, V(t)) = 0

The minimum r for fixed NV and fixed power, 7, solves

2 (1202(1—psy) r Pby 7,7 7
(Zﬂ + Zl—a/2) ( " ) ( o (pﬁblm,-.) (F+1)(f+2)>

Vgpe - pe)

N =

?

which was obtained by plugging in the corresponding value of ¢’Y¥gc in Table 1

into equation (3.5). Defining

F(r,p) =
NA3pe(1 — pe)r?

20 (or b)) (( oot () Fen) (

the equation F (r, p;,) = 0 implicitly defines the function r = f(p,). Using implicit

differentiation, and taking into account that » depends on p;,, we obtain

or _ (r+ 1) (r +2) [poy 77 (r+ 1) (r +2) + (1 = po, r7) (F+ 1) (7 + 2)7]
Ipt, (1= ppy 7)) (F+ D7 +2) (1= pyg) (2 = 72) '

If r > 2 then a?;: < 0. So if we are taking at least two post-baseline measures, larger
0

values of p;, lead to smaller minimal values of r to achieve a certain power. Since

T

GO0y is the same for r = 1 and r = 2, the resulting power of both studies would

be the same and it would be preferable to choose » = 1 since less measurements

need to be collected. The choice between r = 1 and r = 2 is not affected by p,,.
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A.7.2 The effect of py, ,;

A.7.21 LDD, RS, fixed s, V(t)) = 0

The minimum r for fixed N and fixed power, 7, solves

2 (1262(1—ps,) [/ 1 Pby,s,7 1
(Z7r + 21—0/2) ( o ) (f(r+1)(r+2) + (1—;;11,1737;) F(F+1)(F+2))

Vgpe 1— pe)

N =

Y

which was obtained plugging in the corresponding value of ¢’Ygc in Table 1 into

equation (3.5). Defining

F (r’ pb1,8,?’) =

N73pe(1 — pe)s® B (/ N ( Pors, ) 1 )
1202 (2'7r + zl,a/g)Q (1= pt,) k(r +1)(r+2) L—pysr) F(F+1)(F+2))’
the equation F' (7, py, s7) = 0 implicitly defines the function r = f(py, 7). Using
implicit differentiation, and taking into account that  depends on p;, , 7, we obtain

or r2(r+1)%(r +2)2

N >
Opoysi TP+ 1)(F 4 2)(1 = oy s7)* (3% + 6r + 2)

Since the derivative is always positive, r increases as py, 7 increases.
A.7.22 LDD,RS, fixed 7, V(t;) =0

The minimum r for fixed NV and fixed power, 7, solves

2 (1202(1-pty) r Py 7.7 i
(Zw + Z1—0t/2) ( e ) ( 00T <1fp11,1ﬂ.,,-.) (F+1)(F+2)>

’Y:%pe - pe)

N =

Y

which was obtained plugging in the corresponding value of ¢’¥gc in Table 1 into

equation (3.5). Defining
F (Ta pb1,T,F) =
N’y§p€(1 _pe)TQ _ (/ r + < Py 7.7 ) T )
1202 (27 + 21-a72)" (1 — p1y) Kr +0)(r+2)  \1=pyrz/) (F+1)(F+2)
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the equation F'(r, py, ) = 0 implicitly defines the function » = f(py, 7). Using
implicit differentiation, and taking into account that » depends on ps, 7, we obtain

o F(r+1)%(r +2)?
Opyyri (12 =2)(F + 1) +2)(1 = pp, )

Ifr > 2, apfﬁﬁ > 0. So if we are taking at least two post-baseline measurements,
the effect of increasing py, 7 is to increase the minimum r needed to achieve a
pre-specified power. Since —575; is the same for » = 1 and r = 2, the resulting
power of both studies would be the same and it is therefore preferable to choose
r = 1 since less measurements need to be collected. The choice between r = 1 and

r = 2 is not affected by py, ;7.

A.8 Calculation of X5 under RS and V' (¢;) > 0

We need to derive
S = (E T”E; X))

When ¥; = X for all subjects, E (X/;3;

'X;) fan be computed exactly. Under RS,
3, = X when V(ty) = 0, in which case equatiﬁns (3.3) and (3.4) with V' (¢y) = 0 pro-
vide expressions for ¢’Ypc for CMD and LDD, respectively. However, if V' (t5) > 0,
then X; # X under RS. Specifically, ¥, depends on t(;, so we have X(¢(;). The for-

mula for 3; under RS is ¥; = Z;DZ/; + 021, where

L tOi to¢+j8 t0i+7’8
0'2 g
D:( 0 021
001 0'1

and
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Under LDD,

C toi

: . O 7 0
ZiWi= | | to+js G) 10 ki):

<1 t()i +rs <
tOz‘ kz tOz’ki

tOi +7rs l{fz (tOz + T’S) l{fz

where

Therefore,
X/S'X, = WIZ/S'Z,W, = W/Z, (fiDz’i +021) ' Z,W,.

In Appendix A.6.5, we showed that

1

Z/ (07 +o21) " 7= ((22) ' o} +D>_1

s0 X!S71X; = W/ (((z' )62 + D) ' W,. Now,

)

(Z',Z:) = r+1 (r + 1) to; + 5
14 (T + 1) to; + sT(T;-l) (7“ + 1) t(Q)i + Stoi’I"(T + 1) + s r(r+16)(2r+1)
Y (e 1) (r + 2)s2 —3(rs+ 2ty,) 6
and
- (k) lto)
ZIZ 10,2 _|_ D> — ( a’( 01 02 > ’
<( ) o c(toi) d(to:)
where

1202 2
( s T ‘71)

al(t i) =
( ’ ) 1202 2 9 202, r(1+2r)32+6rst0i+6tgi) 60
(r(r+1)(r+2)52 T Ul) o + r(r+1)(r+2)s2 - (001 -
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r(r+1)(r+2)s2
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602 (rs+2to;)
<f0-01 + T(T+1)S(T+20)s2>

1202, 9 9 2(7%y (r(1+27")52+6r8t0i+6t(2)i) 602, (rs+2to; 2’
(it + %) ("0 M T — (o0~ e

2 202 (r(l+2r)s2+6rstoi+6t(2)i)
0 r(r+1)(r+2)s2
d(te;) = :
( ’ ) 1202, 2 2 ) 203, (T(1+2T)32+6T5t0i+6t3i) 602 (rs+2to, 2
(W + "1) % T e (“01 T )

Pre- and post-multiplying by W;, we obtain

-1
X!/S1X; = W <<Z'Z)‘1 o2 + D) W, =
a(toz‘) C(t[)i) k a tOz

(toi)  kic(to:) (
C(tol') d(tol) k C(tOz) k’zd(t()z)
a(to) kic(to) kia(to) ( ) ’

since k7 = k;. To compute

b Elato] Blhd] Bt | (

r51—1 _ tOz tOz iC tOz % tOz’

) [tzzz = [kia(toi)] El[kic(to))] E[kia(to))] E[kic(to)] |’
E [kic(to;))] El[kid(to;)] E[kic(to:))] E [kid(to:)]

the distribution of ty; and the joint distribution of (ty;, k;) are needed. Assuming

that £; follows a Bernoulli distribution with probability of success p., we have

E [o(ta)] = /(aum)f(tm)dtm
=(1—pe) /(a(t()i)f(tOilki = 0)dto; +pe/a(t0i>f<t0i|ki = 1)dt;

and

= Z (/ kia(to;) f (tos, ki) dto; = /&(tm')f(tm', 1)dtos,

k;=0,1
and equivalently we can deduce expressions for E [c(t¢;)], E [d(t;)], E [kic(to:)] and
E [k;d(to;)]. Then, it can be derived that the [4,4]th component of the inverse of
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E [X;EilXi](s
1 - pe fﬁ/ tOz t01|k - O)dtOz
[( I ftor) £ (torl ki = 0)dltor) (f fitor) Ntorl ki = O)dtor) — (f ftor) f(t0i|ki:0)dt0i)2}<
fﬁ toi) f(toilks = 1)dt;

+ .
[(f((tm) (tosl ks = 1)dtoi) ( ( f(toilki = 1)dto;) — (f((tOi)f(tOi%i = 1)dt0i)2]

(A.4)

In the paper and in our software, we assumed that ¢, is normally distributed. We
assumed that ¢(; has mean zero, which can always be achieved by centering at the
mean initial time and implies no loss of generality (Kreft et al., 1995), and that it has
variance V (¢y). Additionally, we assumed that the variance of ¢, is the same within
each exposure group. In Appendix A.1.2 we derived the means of t,; conditional

on exposure as

1_ e
B (tolk = 1) = praoy [ {2 NS
and

E (tolk = 0) = ~peauy | {255 V'V ()

Using results from Appendix A.1.2, we find that

V(tolk =1) =E (2|k = 1) £ [E (to|k = 1))°
_ V(tO) [pe‘{’pZC(

. 1-— 2pe)] (_ pz,t()(l;—epe)v (to) =V (to) (1 - pg,to) (
Therefore,
f(toilki =1) =
1 ( —1 (1 - pe) ) i
ex Loi — Peyto V (to
\/2’/TV (to) (1 — p2,,) ! AV (to) (1—p2s,) ( pe De (fo) ]
f(toilki =0) =
-1 o 2
2V (to) (1 — p2y,) i ¥ petoy [Ty VY (tO)) ] '

! exp
V27V (o) <(— o)


http:distributed.We

Our program uses these distributions to compute (A.4) numerically. For CMD, the

procedure is exactly the same but using the matrix
1 0 K
W= ( 01 0 )(

A.9 Proof that r,, is the same for both the cost con-
straint and the power constraint, and reduces to
the solution to the unconstrained problem (4.2),
but N,,; depends upon the constraint

The power optimization problem is

P [_\/N ‘ <C/B)HA ‘
c'3g(r)c

N ?"cl
K

Max

r

<— Zla/gl (sub]ect to COST = N¢; +

The cost constraint,
kCOST

- ci(k+r)

can be plugged in the optimization function to obtain the unconstrained problem

HCOST
c1(k+T) } /B HA (
r ® — 21-a/2
c'Yp(r)c

Since ¢ is a monotone function, this is equivalent to

/[ kCOST

c1(k+r) | /B HA ( .

1—a/2-
c'Eg(r)c

Removing positive constant terms with respect to r, it is equivalent to

1
M
o (k+7)c’Ep(r)c’

which is in turn equivalent to Min (x + r)c’Xg(r)c. Once 7, is found solving this
minimization problem, N,,; would be

k COST

Ny = —222%
vt c1 (K Topt)
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The cost optimization problem is

N VN |(c'B
Min Nc; + ra subject to ¢ M — Z1—a/2 .
r K c'3g(r)c

N
Ney + ren Ne, </@+r> (
K K

and that from the power constraint

_ (c'3p(r)c) (Zl—a/Q + ZW)Q
((C,B>HA)2

this is equivalent to the unconstrained problem

Min (c" B (r) €) (21-a/2 + Zw)2c1 (’f + 7”) (

Noting that

Y

K

f (t’%f
Removing positive constant tertys with respect to r, the problem becomes
MT in (k+71)(c’3g(r)c), which is equivalent to the minimization problem ob-
tained before. Thus, given x, ¢ and Xg(r), the same ., maximizes power and
minimizes cost. For the cost problem, once 7, is found solving the minimization

problem,
(CIEB(ropt>C) (ZTI' + Z:1704/2)2

Nopt =
" ('B,)?

A.10 Derivation of (N, 7o)
A10.1 (N, ropt) under LDD and fixed s, for CS

The optimal r solves Min (k+r)c’'Egc (Appendix A.9). Plugging in the appropriate
value for ¢’3pc from Table 1, the problem under LDD, CS and fixed s is

120%(1 — p)
Pe(l — pe)s?r(r+1)(r+2)

Min (k+7)

Removing positive constant terms with respect to r, this problem becomes

. (k+T)
.Mrm Fr) = r(r+1)(r+2)
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Since
OF  —2k — 6kr — 3r® — 3rr? — 2r°
or r2(r+1)%(r +2)2

F(r) decreases as r increases, and r,,; — oo subject to the cost constraint.

< 0 Vk,

A10.2 (N, ropt) under LDD, RS and fixed s

The optimal r solves Min (k+r)c'Egc (Appendix A.9). Plugging in the appropriate
value for ¢’3pc from Table 1, the problem under LDD, RS and fixed s is

Min (r+ ) (1822;28 :gt:))) (((7, n li(r o) (1 fbpb> (7 + 1%(% + 2)) (

Removing positive constant terms with respect to r, this problem becomes

Min  G(r) = (k+7) ((m 11)(7“+2) " (1 fblpffs,J F(r+ 1§<f+2>) (

The solution, 7,,, solves

oG Dby 5.7 / 1 N —2k — 6Kk — 3r? — 3k1r2 — 213
or  \1 ﬁ(ﬂ 1)(7 +2) r2(r 4+ 1)2(r + 2)2

:( Pby,s,7 )(N 1~ +8—F:0,
1 — poy s k(r+1>(r+2) ar

where 2 is the derivative of the objective function F(r) for the analogous problem

- pbl,'s:f

under compound symmetry (Appendix A.10.1). We showed in Appendix A.10.1

that 2F is always negative, and since
O’F  2(4k + 18kr + 33kr? + Tr® + 24kr® + 9r* + 6rr* + 3r°)
or? 3 (r+1)% (r 4 2)3

E is also an increasing function of r. In addition, hm W = 0". Since % is ZF plus

20,

or

a constant, 2¢ will equal 0 at some interior point of r between 1 and oo. Since
82G  2(4K + 18kr + 33k1? + Tr® + 24k1r® + 9r* + 6kt + 3r9)
or? 3 (r+1)% (r +2)3

for all » > 0, G(r) is convex and the point that solves %<

>0
98 = 0 is a global minimum
and therefore it is r,,:. Now,

9G P2 (= (3 200) (7 + D)7 +2) + (ropr + 12 + 2)21f’p—)<

=0 k=
or e (2+ 6ropt + 312, Q(f Y1)+ 2)

Figure 8 of the paper shows 7, for several values bf x and p;, ;-
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A10.3 (N, 7ope) under LDD, CS and fixed 7

As shown in Appendix A.9, the optimal r solves Min (k+r)c’Egc. Plugging in the
appropriate value for ¢’3pc from Table 1, the problem under LDD, CS and fixed 7
is

1202%(1 — p)r
pe(1 —p)T2(r+1)(r +2)°

Removing positive constant terms with respect to r, this problem becomes

Min (k+7)

, (k)T
J\Irm H(r) = CESCESE

Taking derivatives with respect to r, r,,; solves

OH  (3—rR)r®+4r+2x
o (r+1)°@r+2)2

For k < 3 the derivative is positive. Therefore, when x < 3, H(r) increases with r
and, consequently, the minimum is at » = 1. If k > 3, the derivative equals 0 at

24+ v2v2 — 3k + K2
r =
K—3 ’

which gives a positive solution only at

2 +v2v2 — 3k + K2
r= .
k—3

Now, we need to check whether at this point there is a maximum or a minimum of

H(r). The second derivative of H(r) is

O?’H  2(4 — 6K — 6kr — 612 — 313 + k13)

or? (r+1)3(r+2)3
We evaluated the second derivative at the point

2 +v2v2 — 3k + K2
7”:
k—3

with Mathematica (Wolfram Research Inc., 2005) and obtained

3v2 V2
24+\/(K;—Q)(Fc—l)>€_17\/§\/(H_2)(K_1)_\/(/{—2)(&—1)_40'
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This expression can be proven to be negative for all x > 3. Therefore, H(r) has a

maximum at
24 V2V2 -3k + K2
N Kk —3 ’

while we were looking for a minimum. Since this is the only local maximum or

minimum of H(r), and H(r) is continuous, the global minimum of H (r) will be at
r = 1 or at r = co. The global minimum will be at r = oo if we can find a value of

r such that
(1+ k)
e

H(r) < H(1) =

With a little bit of algebra , we get

r(r+ k) (1+ k) 5
H(r)= Sri(k—50)+r(—3k+3)+2(k+1) >0,
(r) (r+1)(r+2) 6 ( ) ( ) ( )
which has rootsatr = 1and r = “H .Ifk <5,then r = (“H) < 0, outside of its

valid range. The global minimum is then Topt = 1,

coST
Nopt - —K/
Cl<li + ].)

or
202(1 — p) (z7r + Zl,a/Q)Q

sze(l - pe)fyg
for the power maximization or cost minimization problems, respectively. If x > 5

opt —

then 72(k — 5) +7(—3k + 3) + 2(x + 1) is a convex function and is greater than 0 for

(n+1
K—

r > . Thus, the global minima will be at » = co. In practice, when x > 5, we

will choose r as large as possible provided r > M and then find N, to satisfy

n+1)
-5

the cost or power constraint. If there is no feasible value of r greater than

then one will choose r = 1.

A10.4 (Nyp, 7opt) under LDD, RS and fixed 7

The optimal r solves Min (k+r)c'Egc (Appendix A.9). Plugging in the appropriate
value for ¢’3gc from Tablel, the problem under LDD, RS and fixed 7 is

Min (s +7) (1822228 :gj’;) ((r n 1;(r w9y <1 fbpb) (7 + 1;f - 2)> (
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Removing positive constant terms with respect to r, this problem becomes

Min 1) = (s +7) ((+ N (1 be;if) 7+ 1f<f+2>) <

Taking derivatives with respect to r, r,,; solves

oI ( . ) ( 7 (3 —K)r? +4r + 2k
or 1 — poy r7 \(f + 1) (7 + 2) (r + 1)2 (r+2)?

O A

— Dby \(F +1)(F+2)  Or

where 22 is the derivative of the objective function H (r) for the analogous problem

under CS, given in Appendix A.10.3. There we showed that if £ < 3 then 22 was
strictly positive for all , and therefore so is 4£. Thus, if £ < 3, I(r) is mlmmlzed at
ropt = 1. For k > 3, we know that 22 is continuous, has only one root in the range

of interest and it can be shown that lim %—f = 0" and aH oHQ) _ 7+”. It can also be

r—00

shown with Mathematica (Wolfram Research Inc., 2005) that 91 has only one real

root, r+. Therefore, 2 is positive at r = 1, it crosses 0 at the root
24 V22 -3k + K2
B k—3 ’

as shown in Appendix A.10.3, it has a minimum at the only root of ‘9 Sz and it
increases again towards zero, where it reaches an asymptote. Because of the form

of 4%, it will have a similar shape, since it is equal to 9% but moved upwards by a

(5 fblp’:ﬁ) QH )

L will have zero roots if

(1 Doy )/ 7 OH (%)

> :
— Dby \(r + 1)(7 +2) or
ol

or two roots otherwise. In the first case, when 4 has zero roots, 9L is always

factor of

Therefore, 2L o

positive and therefore /(r) increases as r increases and the minimum of /(r) is at

ropt = 1. In the second case, % has two roots, which solve

r(4 4+ 3r)(F + 1) (7 +2) + 7 (r + ><T+2>2(1522—’ﬂ;><
(r*=2)(r+1)(7 +2)
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9’H

or? is

Also, %if = %, and %25 is continuous and it has only one root at 7.
negative for r < r* and positive for » > r*. Since rx lies between the first and
second roots of &£, it can be concluded that the first root is a maximum of /(r) and
the second root is a minimum of /(7). The function /(r) has, therefore, two local
minima, one at r = 1 and the other at the second root of %. To find out when the

second root is the global minimum of /() we need to solve /(1) > I(r), where

0= (3 (25 ()

I(r) = (k+7) <(+ sz) i (1 fb;;;) (7 + ”f(””) (

Provided r > 2, this is equivalent to

and

[—2(k+ 1)+ (k =D)r] (T 4+ 1)(F+2)
67 (r+1)(r+2)+[-2(k+1)+ (k=5)r](F+ 1)(F +2)

pbl 77—7F <

The condition only makes sense if —2(x + 1) + (x — 5)r > 0, which is equivalent to
the conditions x > 5 and r > % Figure 13 of the paper shows this region for

different values of rand ps, , 7, together with a line for the optimal value.

A.11 Demonstration of the use of program optitxs

This is the input and output from the program optitxs for the calculation
of the optimal combination of (/V,r) that minimizes the total cost of the study
subject to achieving a fixed power under LDD and RS. It is motivated by data
from the study examined in section 5. For other examples and a detailed user’s
guide with many illustrative examples, go to http://www.hsph.harvard.

edu/faculty/spiegelman/optitxs.html.

> long.opt ()

* By Jjust pressing <Enter> after each question, the default value,
shown between square brackets, will be entered.

54


http://www.hsph.harvard.edu/faculty/spiegelman/optitxs.html
http://www.hsph.harvard.edu/faculty/spiegelman/optitxs.html

* Press <Esc> to quit

Do you want to maximize power subject to a given cost (1) or to
minimize the total cost subject to a given power (2)[1]? 2

Enter the desired power (0<Pi<1l) [0.8]: .8

Are you assuming the time between measurements (s) is fixed (1),
or the total duration of follow-up (tau) is fixed (2) [1]1? 2

Enter the time of follow-up (tau) [1]: 18
Enter the exposure prevalence (pe) (0<=pe<=1l) [0.5]: .79

Enter the wvariance of the time variable at baseline, V(t0)
(enter 0 if all participants begin at the same time) [0]: 100

Enter the correlation between the time variable at baseline and
exposure, rho_{e,t0} [0]: O

Constant mean difference (1) or Linearly divergent difference (2)
[1]1: 2

Will you specify the alternative hypothesis on the absolute
(beta coefficient) scale (1) or the relative (percent) scale (2)
[112 2

Enter mean response at baseline among unexposed (mu0OO) [10]: 3.5

Enter the percent change from baseline to end of follow-up among
unexposed (p2) (e.g. enter 0.10 for a 10% change) [0.1]: -.182

Enter the percent difference between the change from baseline to
end of follow-up in the exposed group and the unexposed group

(p3) (e.g. enter 0.10 for a 10% difference) [0.1]: .1

Which covariance matrix are you assuming: compound symmetry (1),
damped exponential (2) or random slopes (3) [1]7? 3

Enter (1) for standard notation (variance of residuals and random
effects) or (2) for "reliability" notation [1]: 2

Enter the variance of the response given the assumed model
covariates at baseline (sigma2) [1]: .34
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Enter the reliability coefficient at baseline (0O<rho_t0<1)
[0.8]: .877

Enter the trial value of the number of measurements at which the
slope reliability will be provided (\tilde r>0 ) [5]: 6

Enter the slope reliability for 6 repeated measurements
(O<rho_{bl,s,\tilde r}<l or O<rho_{bl,tau,\tilde r}<1)
[0.1]: .364

Enter the correlation between the random effects of slope
and intercept (-1<rho[b0,bl]l<1l) [0]: -.32

Enter the cost of the first observation of each subject (cl1>0)
[80]: 80

Enter the ratio of costs between the first measure and the rest
(kappa) [2]: 20

Cost optimization problem (min cost for a given power):
Optimal r= 12 , Optimal N= 732 , Power= 0.8 ,Cost= 93696

Slope reliability at r= 12 : 0.4818737
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