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Appendix 

A.1 Variance formulas 

A.1.1 Proof of formulas (3.2) and (3.3) 

� 
From equation (2.1) we have ΣB = E−1 X0 iΣ

−
i 

1Xi . Now, 

X0 iΣ
−1Xi = 

⎞ ⎟⎠ 
⎛ ⎜⎜⎜⎜⎜⎝ 

⎞ ⎟⎟⎟⎟⎟⎠ = 

1 ti0 ki 
. . . . . . . . . 
1 ti0 + sj ki 
. . . . . . 

⎞⎠ 
⎛ ⎜⎝ 

⎛⎝ ν00 · · · ν0r1 · · · 1 · · · 1 
ti0 · · · ti0 + sj · · · ti0 + sr . . . . . ... . 
ki · · · ki · · · ki νr0 · · · vrr . . . 

1 ti0 + sr ki ⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

vjj0 

j=0 j0=0 

Pr rP 
� � 

X 
X 
X 

XXXr r r r r r

ti0 vjj0 + ti
2
0 vjj0 + sti0 (j + j0)vjj0 

r r r r

X 
X 

X 
X j0=0 j0=0 j=0 j0=0j=0 j=0� �= 

s jvjj0 +s 2 jj0 vjj0 

PPPPP 0 0j=0 j=0j =0 j =0 Pr r r r r r
! Pr rP 

pp

j=0 j0=0 j=0 j0=0 j=0 j0=0 j=0 j0=0 

Using t̄0 = E (t0), pe = E (k) = E (k2) and 
¯E (kt0) − pet0 

and assuming without loss of generality that t̄0 

k2 
iki vjj0 ki ti0 vjj0 + s jvjj0 vjj0 

ρe,t0 = , 
pe(1 − pe) V (t0) 

= 0 (this can be achieved by cen-

tering the initial time), which implies E (t20) = V (t0), we have that � 
Pr rP X0 iΣ−1 

iE Xi = ⎛ ⎜⎜⎜⎜⎜⎝ 
Pr rP vjj0 

j=0 j0=0 Pr rP 
Pr rP s jvjj0 V (t0) vjj0 + s2 jj0vjj0 

⎞ ⎟⎟⎟⎟⎟⎠ 
Pr rP 

� Prj0=0 j=0 j0=0j=0 j0=0 j=0� 
ρe,t0

p
pe(1 − pe)

p Pr
V (t0) vjj0 + spe 

PPPPr r r r

j0=0 j=0 j0=0 j=0 j0=0 
jvjj0pe vjj0 

j=0 j0=0 
pe vjj0 

j=0 
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We are interested in the [3,3] component of the inverse of this matrix, which is 

c 0ΣBc = c 0 (E (X0 iΣiXi))
−1 
c = !2 

Pr r r rP 
Pr rP 

PP 
s2 det(A) + vjj0 V (t0) 

j=0 j0=0 !⎡ ⎤!2 � ⎣s ⎦2 det(A) + 1 − ρ2vjj0 e,t0pe(1 − pe) vjj0 V (t0) 
j=0 j0=0 j=0 j0=0 

If either V (t0) or ρe,t0 are zero then 

c 0ΣBc = 
1 Pr Pr ! . 

pe(1 − pe) vjj0 

j=0 j0=0 

If we follow Lachin’s approach (Lachin, 2000), instead of using the asymptotic 

X variance use the variance of B̂ conditional on the covariates, which is 
N

!−1 

X 
X0 iΣ

−1 
i Xi , 

i=1 

and redefine ΣB as 
N

!−1 
1 

X0 iΣ
−1 
i Xi

N 
i=1 

so that the test statistic is still √ 
0 ̂N c B 

T = √ . 
c0ΣBc 

Then, we would take the expected value of the non-centrality parameter under 

the alternative hypothesis over the distribution of Xi, i.e. we would compute 

E [T 2|H1]. If we assume that everyone is observed at the same set of time points, 

then the only random covariate is exposure. Thus, 

1 X 
XiΣ

−1X0 i = 
N 

i ⎛ ⎜⎜⎜⎜⎜⎜⎜⎝ 
s 

j0=0 
jj0vjj0 ! �P 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎠ 
, 

P
Pr r

P
P 
r r

vjj0 

j=0 j0=0 

j=0 j0=0 
jvjj0 s2 

PPP 
Pr r

P 
P
� PP � j=0 

r r r r r r
i i i vjj0 s jvjj0 vjj0
N N N 

j=0 j0=0 j=0 j0=0 j=0 j0=0 
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and the [3,3] component of the inverse is ⎡⎛P ⎞⎛ P ⎞ !⎤−1ki ki Xr rX 
c 0ΣBc = ⎣⎝ i ⎠⎝1 − i ⎠ vjj0 ⎦ . 

N N 
j=0 j0=0 

Then, ⎛P ⎞⎛ P ⎞ !ki ki r r
β̂2 XX 

T 2 = 2 = Nβ̂2 ⎝ i ⎠⎝1 − i ⎠ vjj0 

V ar(β̂2) 
2 N N 

j=0 j0=0 

and ⎡ ⎛P ⎞⎛ P ⎞ !⎤ 
ki ki r r� � XX ⎝ ⎝1 − ⎠E T 2|H1 = E ⎣Nβ2 i ⎠ i ⎦ ,2 vjj0 

N N 
j=0 j0=0 

where the expected value is taken over the distribution of ki, so ⎡⎛P ⎞⎛ P ⎞⎤! 
r r ki ki� � XX ⎣⎝ i ⎠ i ⎠⎦E T 2|H1 = Nβ2

2 vjj0 E ⎝1 − . 
N N 

j=0 j0=0 P 
Noticing that Z = ki is a Binomial variable we can work out the expected value, 

i ! 
r r �� �� ��� � XX Z Z

E T 2|H1 = Nβ2 vjj0 E 1 −2 N N 
j=0 j0=0 !�r r �XX E (Z) E (Z2) 
= Nβ2 −2 vjj0 

N N2 
j=0 j0=0 !�r r 2 �XX Npe(1 − pe) + N2pe = Nβ2

2 vjj0 pe − 
N2 

j=0 j0=0 !�r r �XX 2Npe − pe + pe − Npe 
2 

= Nβ2
2 vjj0 

N 
j=0 j0=0 ! 

r rXX 
= (N − 1) β2

2 vjj0 pe (1 − pe) . 
j=0 j0=0 

The non-centrality parameter with the approach we followed in the paper is ! 
r rXX 

Nβ2
2 vjj0 pe (1 − pe) , 

j=0 j0=0 � � 
so there is only a 1 − 

N 
1 correction compared with the one obtained with Lachin’s 

method. 
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A.1.2 Proof of formula (3.4) 

Following model (2.6), and our derivations on Appendix A.1.1, we now have that 

X0 iΣ
−1Xi = ⎛ ⎜⎜⎝ 

1 · · · 1 · · · 1 
ti0 · · · ti0 + sj · · · ti0 + sr 
ki · · · ki · · · ki 

⎛ ⎜⎝ 
⎞ ⎟⎟⎠ v00 · · · v0r 

. ... . . . . . 

⎞ ⎟⎠ 
vr0 · · · kiti0 · · · kiti0 + kisj · · · kiti0 + kisr vrr ⎛ ⎜⎜⎜⎜⎜⎝

1 ti0 ki kiti0 
. . . 

. . . 
. . . 

. . . 
1 ti0 + sj ki kiti0 + kisj 
. . . 

. . . 
. . . 

. . . 
1 ti0 + sr ki kiti0 + kisr 

⎞ ⎟⎟⎟⎟⎟⎠ 
and using the results in Appendix A.1.1 we only need to derive the components in 

X0 iΣ
−1the last row. We can derive E i 

� 
Xi , in which the [4,1] component is equiva-

XX 
lent to the [3,2] and therefore it takes the value � r r� XXr r

V (t0) vjj0 + spe jvjj0 .
p p

(1 − peρe,t0 )pe

j=0 j0=0 j=0 j0=0 

X 
The [4,2] component is 

X� r r � XX� r r

V (t0) jvjj0 + s 
XXr r

j0=0 j=0 j0=0

p
pe

p
jj0 vjj0 ,kt20 vjj0 

2E (1 − pe)+ 2s ρe,t0 pe 

j=0 j0=0 j=0 

the [4,3] component is 

� XXXX� r r r r

V (t0) vjj0 + spe jvjj0 , 
j=0 j0=0 j=0 j0=0 

ρe,t0

p
pe(1 − pe)

p
and the [4,4] component is the same as the [4,2] component. An expression for � 
E (kt2) = peE t2 in terms of the known parameters is needed. Since we as-0 0,k=1 �� 
sumed that t̄0 = 0, then V (t0) = E (t2 = (1 − pe)E t2 + peE t2 , which 0) 0,k=0 0,k=1 

implies � 
V (t0) − peE t2 

0,k=1� 
2E t . (A.1)= 0,k=0 1 − pe 
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We have from Appendix A.1.1 that p p
¯E (kt0) = pet0,k=1 = ρe,t0 pe(1 − pe) V (t0), 

therefore s p(1 − pe)
t̄0,k=1 = ρe,t0 V (t0) 

pe 

and it can be deduced that r ppe
t̄0,k=0 = −ρe,t0 V (t0). 

(1 − pe)

Then, 
2 (1 − pe)

(t̄0,k=1) = ρ2
e,t0 

V (t0) 
pe 

and 

(t̄0,k=0)
2 = ρ2

e,t0 

pe 
V (t0) . 

(1 − pe) 

We assume that the variance of t0 is the same in exposed and unexposed, i.e. 

V (t0,k=0) = V (t0,k=1). It follows that � � � � 
2 2 2 2V (t0,k=0) = V (t0,k=1) ⇔ E t − (t̄0,k=0) = E t − (t̄0,k=1) .0,k=0 0,k=1 

Plugging in expression (A.1) we obtain that � � � 
2 

� 1 − 2peE t = V (t0) + ρ2 V (t0) .0,k=1 e,t0 pe 

Therefore, � � � � � � 
E kt2 = peE t2 = V (t0) pe + ρ2 (1 − 2pe) .0 0,k=1 e,t0 � � 

X0 iΣ
−1Now, plugging in this last expression in the formula for E i Xi , and invert-

ing the matrix, it can be derived that its [4,4] component is 

0 � � ��−1 
c 0ΣBc = c E X0 iΣ

−
i 

1Xi c = ! 
r rP P 

vjj0 

j=0 j0=0 ⎡ ⎤ .!2 
r r

pe(1 − pe) ⎣s2 det(A) + 1 − ρ2
e,t0 

V (t0) vjj0 ⎦ 
j=0 j0=0 

� � P P 
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If V (t0) = 0, then ! 
rP rP 

vjj0 

j=0 j0=0 
c 0ΣBc = , 

pe(1 − pe)s2 det(A)

and if ρe,t0 = 0 then ! 
rP rP 

vjj0 

c 0ΣBc = ⎡ j=0 j0=0 ⎤ .!2 ⎣s
rP rP ⎦pe(1 − pe) 2 det(A) + V (t0) vjj0 

j=0 j0=0 

If we can assume that t0 and exposure are independent, then the formula we de-

rived for the case ρe,t0 = 0 also applies to model (2.7), which assumes a general 

form for the relationship between response and time in the unexposed but requires 

that a main effect of time is in the model, we can rewrite the model as 

E (Yij |Xij ) = γ0 + γ1tij + α1f1 (tij ) + · · · + αqfq (tij ) + γ2ki + γ3 (tij × ki) , 

where fu (tij ) , u = 1, . . . , U are arbitrary functions of time. Since the [m, q] term P 
of the matrix E (X0 iΣ−1Xi) can be written as vjj0 E (xijmxij0q), where xkijm is the 

j,j0 

value of the mth covariate for subject i from group k at time tj , and exposure and 

time are independent, which implies 

E (kifu (tij0 )) = E (ki) E (fu (tij0 )) = peE (fu (tij0 )) ∀u, 
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� 
we have 

� 
E X0 iΣ

−1Xi = PPP⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

vjj0 vjj0 E (tij0 ) vjj0 E (f1 (tij0 )) · · · 
j,j0 j,j0 

j,j0 j,j0 

P 
P 

P 
P 

j,j0 

j,j0 

P 
P vjj0 E (tij ) vjj0 E (tij tij0 ) vjj0 E (tij f1 (tij0 )) · · · 

vjj0 E (f1 (tij )) vjj0 E (tij f1 (tij )) vjj0 E (f1 (tij ) f1 (tij0 )) · · · 
j,j0 j,j0 j,j0 

...P ...P ...P 
vjj0 E (fV (tij0 )) vjj0 E (tij fV (tij0 )) vjj0 E (f1 (tij ) fV (tij0 )) · · · 

j,j0 P j,j0 P j,j0 P 

P 
P 

P pe vjj0 pe vjj0 E (tij0 ) pe vjj0 E (f1 (tij )) · · · 
j,j0 j,j0 

j,j0 

P 
j,j0 j,j0 

P 

j,j0 j,j0 j,j0 

P 
P 

j,j0P 
pe vjj0 E (tij ) pe vjj0 E (tij tij0 ) pe vjj0 E (tij f1 (tij )) · · · 

j,j0 j,j0 P P 
· · · vjj0 E (fV (tij0 )) pe vjj0 pe vjj0 E (tij0 ) 

j,j0P 
· · · vjj0 E (tij fV (tij0 )) pe vjj0 E (tij0 ) pe vjj0 E (tij tij0 ) P 
· · · vjj0 E (f1 (tij ) fV (tij0 )) pe vjj0 E (f1 (tij0 )) pe vjj0 E (tij f1 (tij0 )) 

j,j0 j,j0 j,j0 

...P ...P ...P 
· · · vjj0 E (fV (tij) fV (tij0 )) pe vjj0 E (fV (tij0 )) pe vjj0 E (tij fV (tij0 )) 

j,j0 P j,j0 P j,j0 P 
P E E(f ( )) ( )t t· · · p v p v p v0 0 0 0jj V ij jj jj ije e e 

0 0j,j j,jP j,j0P 
· · · pe vjj0 E (tij fV (tij0 )) pe vjj0 E (tij ) pe vjj0 E (tij tij0 ) 

j,j0 j,j0 j,j0 

M1 
(2×(V +2)) 

M0pe 1M2 ((V +2)×2) 
(V ×(V +2)) 

peM1 peM4 
(2×(V +2)) (2×2) 

⎛ ⎜⎜⎜⎜⎝ = M = 

Define the matrix 

Q = 

⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

1 0 · · · · · · · · · 0 

0 1 
......

... 
............

0 · · · 0 1 
......

−pe 0 · · · 0 1 0 
0 −pe · · · 0 0 1 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎠ 
= 

⎛⎝ ⎞⎠I 0 
((V +2)×(V +2)) ((V +2)×2) 

,
Q1 I 

(2×(V +2)) (2×2) 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 
⎞ ⎟⎟⎟⎟⎠ 
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such that 

QMQ0 = B = ⎛ ⎜⎜⎜⎜⎜⎜⎜⎝ 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎠ 

0 0 
. . . .B1 . . 
0P 0P 

pe(1 − pe) vjj0 pe(1 − pe) vjj0 E (tij0 )
0 · · · 0 0j,jP 
0 · · · 0 pe(1 − pe) vjj0 E (tij ) pe(1 − pe) vjj0 E (tij tij0 ) 

jj0P 
jj0 j,j0 �� 

P 
Pr r r rP 

B1 0 
= 

0 B2 

Since E (tij0 ) = E (t0)+sj0 and E (tij tij0 ) = E (t20)+s(j+j0)E (t0)+s2jj0, and assuming 

without loss of generality that E (t0) = 0 and therefore E (t20) = V (t0), we have that P 
r

P⎛ ⎜⎜⎝ 
⎞ ⎟⎟⎠P vjj0 s jvjj0 

j=0 j0=0 j=0 j0=0 
rB2 = pe(1 − pe) Pr r r rPP 

s jvjj0 V (t0) vjj0 + s2 
P . 

jj0vjj0 

j=0 j0=0 j=0 j0=0 j=0 j0=0 

We are interested in the [V+4,V+4] component of M−1, which corresponds to 

NV ar (γ̂3). Now, � � 
B−1 + Q0 B−1 Q0 B−1 

1 1 2 Q1 1 2M−1 = Q0B−1
Q = 

B−1 B−1 , 
2 Q1 2 

and 

1 
B−1 = 2 ⎡ ⎤!2 

Pr rP 
Pr rP 

vjj0 

j=0 j0=0 

⎣V (t0) ⎦ 
Pr rP 

2 det(A)pe(1 − pe) + s

⎛ ⎜⎜⎝ 
⎞ ⎟⎟⎠ . 

Pr r

Pr r

P 
P j=0 j0=0 j=0 j0=0 j=0 j0=0 

jj02 −sV (t0) jvjj0 Pr rP vjj0 + s vjj0 

Pr rP 
−s jvjj0 vjj0 

j=0 j0=0 j=0 j0=0 

Thus, the [V+4,V+4] component of M−1 is ! 
⎡ Pr rP 

vjj0 

j=0 j0=0 ⎤!2 
. 

pe(1 − pe) ⎣V (t0) vjj0 

j=0 j0=0 
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If we follow Lachin’s approach (Lachin, 2000), instead of using the asymptotic 

variance use the variance of B̂ conditional on the covariates, which is 

NX !−1 

X0 iΣ
−1Xi ,i 

i=1 

and redefine ΣB as 
NX !−1 

1 
X0 iΣ

−1 
i Xi

N 
i=1 

so that the test statistic is still √ 
0 ̂N c B 

T = √ . 
c0ΣBc 

Then, we would take the expected value of the non-centrality parameter under 

the alternative hypothesis over the distribution of Xi, i.e. we would compute 

E [T 2|H1]. If we assume that everyone is observed at the same set of time points 

(V (t0) = 0), then the only random covariate is exposure and we have 

X1 
XiΣ

−1X0 i = 
N 

i⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

j,j0 

P
P vjj0 P 

jj0vjj0jvjj0 s2s �j,j0 

ki P �j,j0�P�P �P 
k2 

i 
� Pki P 

i i i vjj0 s jvjj0 vjj0
N N N 

j,j0 j,j0 j,j0�P � � � � P � � �P P
2 2ki ki ki ki PP P Ps s s

jj0vjj0 jj0vjj0 
i i i ijvjj0 jvjj0s 
N N N N 

j,j0 j,j0 j,j0 j,j0 

and the [4,4] component of the inverse is ! 

!Pr r

Pr r

P 

P 
vjj0 

j=0 j0=0 
c 0ΣBc = �P �� P � . 

ki ki 

s2 det(A) i 

N 1 − i 

N 

Following the same steps as in Appendix A.1.1 we can derive that 

2 det(A)pe(N − 1) γ3
2s�� (1 − pe)E T 2|H1 = . 

vjj0 

j=0 j0=0 
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� � 
� 

The non-centrality parameter with the approach we followed in the paper is 

Nγ3
2s (1 − pe!Pr rP 

2 det(A)pe ) 
, 

vjj0 

j=0 j0=0 � 
so there is only a 1 − 

N 
1 correction compared with the one obtained with Lachin’s 

method. 

! Pr rP 
vjj0 

j=0 j0=0A.1.3 Proof that N V ar (η̂5) = c0ΣBc = under pe(1−pe)s2 det(A) 

model (2.9). 

From model (2.9), we have 

X0 iΣ
−1Xi = 

⎛ ⎜⎜⎜⎜⎜⎜⎝ 
1 · · · 1 · · · 1 
ti0 · · · ti0 · · · ti0 

0 · · · sj · · · sr 
ki · · · ki · · · ki 

kiti0 · · · kiti0 · · · kiti0 

0 · · · kisj · · · kisr 

⎛ ⎜⎝ 
⎞ ⎟⎟⎟⎟⎟⎟⎠ 

⎞ ⎟⎠ v00 · · · v0r 
. . . . . ... . 

vr0 · · · vrr 

⎛ ⎜⎜⎜⎜⎜⎝ 
1 ti0 0 ki kiti0 0 
. . . . . . . . . . . . . . . . . . 
1 ti0 sj ki kiti0 kisj 
. . . . . . . . . . . . . . . . . . 
1 ti0 sr ki kiti0 kisr 

⎞ ⎟⎟⎟⎟⎟⎠ 
and we can deduce using the following results derived in appendices 1.1 and 1.2, 

i.e. �� 
E (t0) = t̄0 = 0, E t0

2 = V (t0) , E (k) = E k2 = pe, 

E (kt0) = ρe,t0 pe(1 − pe) V (t0) = kt, �
p

�
p

� 
= V (t0) pe (1 − 2pekt20 + ρ2

e,t0 
E = kt2 ,) 
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� 
that 

� 
X0 iΣ

−1 
iE Xi = ⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

P 
vjj0 

j,j0 

0 V (t0) 
P 

vjj0 

j,j P P 
jj0vjj0s jvjj0 0 s2 

j,j0 j,j0 

pe vjj0 kt vjj0 spe jvjj0 pe vjj0 

j,j0 j,j0 j,j0 j,j0 

P
P

kt 
0 0 0 0j,j j,j j,j j,j

P
P
P 

P
P 

P
P
P 

P P 
kt2 

P
Pj,j0 

vjj0kt2kt skt jvjj0vjj0 vjj0 vjj0 P 
jj0 jj0vjj0spe jvjj0 skt jvjj0 s2pe 

2jvjj0 skt jvjj0vjj0 spe s pe 
j,j0 j,j0 j,j0 j,j0 j,j0 j,j0 

The [6,6] component of the inverse of this matrix is ! Pr rP 
vjj0 

j=0 j0=0 
c 0ΣBc = , 

pe(1 − pe)s2 det(A)

as we derived in Appendix A.1.2 for the LDD case with V (t0) = 0. 

�� 

XX 

A.1.4 Proof that sλ̂1 = η̂5 and s2V ar λ̂1 = V ar (η̂5) from models 

(2.9) and (2.10) 

The GLS estimator has the expression 

N N
!−1 ! 

X 

B̂ = X0 iΣ
−1Xi X0 iΣ

−1Yi , 
i=1 i=1 

where Xi is the matrix of covariates for participant i. To derive η̂5 from model (2.9) 

we only need the sixth row of 

N
!−1 

X 
X0 iΣ

−1Xi , 
i=1 

N

which we denote ⎡ ⎤!−1 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

⎣ X0 iΣ
−1Xi

⎦ , 
i=1 

[6] 

11 



  

 

 

 

 

 

 

and then ⎡ ⎤!−1 ! XN NX 
η̂5 = ⎣ X0 iΣ

−1Xi ⎦ X0 iΣ
−1Yi , 

i=1 i=1 
[6] 

which we rewrite as ⎛ ⎞⎡ ⎤!−1XN NX⎜ ⎟
η̂5 = ⎝ ⎣ X0 iΣ

−1Xi ⎦ X0 iΣ−1Yi⎠ . 
i=1 i=1 

[6] 

Then, by calling ⎡ ⎤ 
N

!−1X 
cη = ⎣ X0 iΣ

−1Xi ⎦ X0 iΣ−1 

i=1 
[6] 

we have ! 
NX 

η̂5 = cηYi . 
i=1 

In Appendix A.1.3 we derived and expression for ! 
NX 
X0 iΣ

−1Xi 

i=1 

and from that we can derive ⎡ 
N

!−1 
⎤ X ⎣ X0 iΣ

−1Xi ⎦ =
1 

det(A)pe(1 − pe)s 
i=1 

[6]� � r r r r r r r rP P P P P P P P−pe 1 pe jvjj0 , 0, 
s vjj0 , − jvjj0 , 0, 

s vjj0 . 
j=0 j0=0 j=0 j0=0 j=0 j0=0 j=0 j0=0 

For convenience, some terms can be rewritten in vector form. We define 1 as a 

(r + 1) × 1 vector of ones, and t as a (r + 1) × 1 matrix such that t0 = (0, 1, 2, . . . , r), 

and then ⎡ ⎤ 
N

!−1X ⎣ X0 iΣ
−1Xi ⎦ =

1 
det(A)pe(1 − pe)s 

i=1 
[6]� � 

pet
0Σ−11, 0, −

s
pe 10Σ−11, −t0Σ−11, 0, 1 

s 1
0Σ−11 . 
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We can also derive 

X0 iΣ
−1 = 

⎛ ⎜⎜⎜⎜⎜⎜⎝ 
1 · · · 1 · · · 1 
ti0 · · · ti0 · · · ti0 

0 · · · sj · · · sr 
ki · · · ki · · · ki 

kiti0 · · · kiti0 · · · kiti0 

⎞ ⎟⎟⎟⎟⎟⎟⎠ 
⎛ ⎜⎝ 

⎞ ⎟⎠ = 

⎛ ⎜⎜⎜⎜⎜⎜⎝ 

10Σ−1 

ti01
0Σ−1 

st0Σ−1 

ki1
0Σ−1 

kiti01
0Σ−1 

⎞ ⎟⎟⎟⎟⎟⎟⎠ 
v00 · · · v0r 
. . . . . . ... . 

vr0 · · · vrr 

0 · · · kisj · · · kisr skit
0Σ−1 

Then, 

NX ⎡ ⎤!−1 
1⎣ X0 iΣ

−1Xi
⎦ X0 iΣ

−1 cη = = 
det(A)pe(1 − pe)s 

i=1 
[6]� � 

� −1 −1 −1 −1 −1 −1 −1 −1
pet

0Σ 110Σ − pet
0Σ 10Σ 1 − kit

0Σ 110Σ + kit
0Σ 10Σ 1 � −10k ) 1 Σ+ i(−pe 1 

� �� �−1−1 −10 Σ−1 − Σ−11 10Σ 1 10Σ= t . 
det(A)pe(1 − pe)s 

Now let us move to model (2.10). Define the r × (r + 1) matrix 

Δ = 

⎛ ⎜⎜⎜⎜⎜⎝ 

⎞ ⎟⎟⎟⎟⎟⎠ . 
−1 1 0 · · · · · · 0 
0 −1 1 0 · · · 0 

0 0 
. . . . . . . . . .. . 

. . . .. . . .. . . . 0 
0 · · · · · · 0 −1 1 

Note that ΔYi contains the differences of the response from one visit to the next, 

so ΔYi is the response variable in model (2.10). The covariance matrix of the 

response for model (2.10) will then be ΔΣΔ0 . Let us call Z the r × 2 matrix of 

covariates for model (2.10), �� 
1 · · · 1 

Z0 = 
ki · · · ki 

and X[3,6] a (r + 1) × 2 matrix containing the third and sixth column of Xi from 

model (2.9), �� 
0 sj sr 

X0 = .[3,6] 0 kisj kisr 
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Then, it can be noted that 1 
s ΔX[3,6] = Z. Therefore, the GLS estimate of λ1 can be 

written as ⎡ ⎤!−1 ! 
N NX X −1 −1

λ̂1 = ⎣ Z0 i (ΔΣΔ
0) Zi ⎦ Z0 i (ΔΣΔ

0) ΔYi = 
i=1 i=1 

[2]⎛ ⎞ 
N

⎡ 
N

!−1 
⎤ X X� �⎜1 1 �0 −1 �0 −1 ⎟ ⎝ ⎣ ΔX[3,6] (ΔΣΔ0) ΔX[3,6] ⎦ ΔX[3,6] (ΔΣΔ0) ΔYi⎠2s s

i=1 i=1 
[2]⎛ ⎞⎡ ⎤ 

N N
!−1X X⎜ −1 −1 ⎟ 

= ⎝ s ⎣ X0 [3,6]Δ
0 (ΔΣΔ0) ΔX[3,6] ⎦ X0 [3,6]Δ

0 (ΔΣΔ0) ΔYi⎠ 
i=1 i=1 

[2] 

NX 
= cλYi. 

i=1 

Now, ! 
NX −1
X0 [3,6]Δ

0 (ΔΣΔ0) ΔX[3,6] 

i=1 ⎛ ⎞ � � 1 ki 
2 1 · · · 1 −1 ⎜ . . ⎟ 

= s (ΔΣΔ0) ⎝ . .. ⎠(r×r) .ki · · · ki (2×r) 1 ki (r×2) � �� � 
2 −1 1 pe = s t0Δ0 (ΔΣΔ0) Δt , 

pe pe 

so ⎡ 
N

!−1 
⎤ X ⎣ X0 [3,6]Δ

0 (ΔΣΔ0)
−1 
ΔX[3,6] ⎦ = 

i=1 
[2] 

1 � � � −1 � −pe 1 . 
pe(1 − pe)s2 t0Δ0 (ΔΣΔ0) Δt 

Now, by property B.3.5 of Seber (1984, page 536), � �−1−1 −1 −1
Δ0 (ΔΣΔ0) Δ = Σ−1 − Σ−11 10Σ 1 10Σ . 

Then, 

1 1 � � = � � � �−1 � �−1t0Δ0 (ΔΣΔ0) Δt t0 Σ−1 − Σ−11 10Σ−11 10Σ−1 t 
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and with some algebra this expression equals � � 
10Σ−11 

. 
det(A) 

So ⎡ ⎤ 
N

!−1 � �X −1 10Σ−11 � � ⎣ X0 [3,6]Δ
0 (ΔΣΔ0) ΔX[3,6] ⎦ = −pe 1 . 

pe(1 − pe)s2 det(A)
i=1 

[2] 

Now we need to derive X0 [3,6]Δ
0 (ΔΣΔ0) Δ, and by using Seber’s property again 

we have � �� �−1 
X0 Σ−1 − Σ−11 10Σ

−1
10Σ

−1 
[3,6]Δ

0 (ΔΣΔ0) Δ = X0 [3,6] 1 . 

So, ⎡ ⎤ 
N

!−1X 
cλ = s ⎣ X0 [3,6]Δ

0 (ΔΣΔ0)
−1 
ΔX[3,6] ⎦ X0 [3,6]Δ

0 (ΔΣΔ0) Δ = 
i=1 

[2]� � � � 
10Σ−1 � �−11 � � 

X0 Σ−1 − Σ−11 −1 −1
10Σ= −pe 1 [3,6] 10Σ 1 

det(A)spe(1 − pe)� � � �� � 
10Σ−1 � �−11 � � t0 −1 −1 

= −pe 1 Σ−1 − Σ−11 10Σ 1 10Σ
det(A)pe(1 − pe) kit

0 � � � � 
(−pe + ki) 10Σ

−11 0 
� 

−1
�−1 −1 

= t Σ−1 − Σ−11 10Σ 1 10Σ
det(A)pe(1 − pe) � � 

and we can observe that cλ = c
s 
η and therefore sλ̂1 = η̂5 and s2V ar λ̂1 = V ar (η̂5). 

A.2 Bias and/or inefficiency of the ANCOVA and 
SLAIN tests in observational studies 

Frison and Pocock (1992, 1997) considered general tests of the form � �2¯N pe(1 − pe) S1 − S̄0 
T = , 

c0Σc 

¯where Sk is exposure group k ’s mean, k = (0, 1), of a summary measure, Si, that 

is a linear combination of the repeated measures of each subject, Si = c0Yi. The 
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� 

� 

vector c0 defines the summary measures, which could be, for example, the within-

subject mean of the repeated measures, the within-subject slope, or ANCOVA, 

SLANC and SLAIN . Let nk be the number of participants in exposure group k. 

Then, 

= c 0 

⎛ ⎜⎜⎝ 
N

YiI {ki = k}
i=1 

P 
nk 

⎞ ⎟⎟⎠ = c 0Ȳk, 

N

SiI {ki = k}
i=1 

P 
S̄k = 

nk 

where I {ki = k} is an indicator variable that takes the value one when ki = k and 

¯zero otherwise, and Yk is the (r + 1) × 1 vector of sample means for each time in 

group k. Thus, 
c
� ��20 Y1 − Ȳ0 
¯N pe(1 − pe)

T = . 
c0Σc � �

S̄k 
0Clearly, E , where µk is the vector of true means for each time in group = c µk� ��

S̄1 − S̄0 
0 1 10(µ1 − µ0). If c = 

r+1 , · · · ,k, and E , we are testing the equality = c
r+1 

of the means of the two groups. Frison and Pocock (1992, 1997) found the vector 

c0 so that E (T |H0) = 0 (valid) and for which the power of T is at its maximum 

possible under HA (efficient). They found that the optimal vector c0 is proportional 

to (µ1 − µ0)Σ
−1. The resulting optimal test to detect a group difference under the 

CMD hypothesis in clinical trials was called ”ANCOVA”, and under CS covariance � 
it has c0 = −ρ, 1 

r , · · · , 
1 
r (Frison and Pocock, 1992, 1997). The resulting optimal 

test under the LDD hypothesis in clinical trials was called ”SLAIN”, and under CS 

covariance it has 

12j + 6ρr(2j − r − 1) 
cj = , j = 0, . . . , r 

r(r + 1) [ρr(r − 1) + 2(2r + 1)]

(Frison and Pocock, 1997). They also noted that their proof is similar to a GLS 

result (Frison and Pocock, 1997). Actually, since the GLS estimator is the best linear 

unbiased estimate of the parameter of a model, the test based on the GLS estimator 

of a model that correctly characterizes the shape of the differences between the 

exposed and the unexposed over time will be the optimal test. We next derive 

what is the underlying model of ”ANCOVA” and ”SLAIN”. 
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Under the CMD hypothesis in clinical trials, the difference vector (µ1 − µ0) is as-

sumed to be proportional to (0, 1, . . . , 1) (Frison and Pocock, 1992), i.e. there is 

no difference at baseline, due to randomization, but there is a constant difference 

afterwards. This situation can be characterized by the following model: 

E (Yij |Xij ) = β0 + β1I {j > 0} + β2I {j > 0} ki, (A.2) 

where is the post-baseline difference between the two groups. The GLS estima-β2 

X 
tor of the coefficients is 

N NX ⎛⎝ !−1 ! !−1N N

B̂ = X0 iΣ
−1Xi X0 iΣ

−1Yi 

XX 
X0 iΣ

−1Xi X0 iΣ
−1Yi = . 

i=1 i=1 i=1 i=1 

The estimator of the parameter of interest is 

XN NX ⎛ ⎜⎝ Yi 

⎞ ⎟⎠, 

⎡ ⎤!−1 

β̂2 = ⎣ X0 iΣ
−1Xi X0 iΣ

−1⎦ 
i=1 i=1 

[3] 

X 
where the subscript [3] refers to the third row of the matrix. We have 

N NX 
⎛ ⎜⎜⎜⎝ 

⎞ ⎟⎟⎟⎠ 
⎛ ⎜⎝ 

⎞ ⎟⎠ 
1 0 0⎛⎝ ⎞⎠ v001 · · · · · · 1 . . . 1 kiX0 iΣ

−1Xi = . .0 1 · · · 1 . . .. . . . . . .0 ki · · · ki . . .i=1 i=1 v0r · · · vrr 
1 1 ki 

= N 

⎛ ⎜⎜⎜⎜⎜⎜⎝ 

⎞ ⎟⎟⎟⎟⎟⎟⎠ 

P
Pr r

P
P 
r r

vjj0 

j=0 j0=0 Pr rP 
vjj0 vjj0 , Pr r r rPPP j=0 j0=1 j=1 j0=1 

Pr r r

Pr rP 
PP 

pe vjj0 pe vjj0 pe vjj0 

j=0 j0=1 j=1 j0=1 j=1 j0=1 

Pr
vjj0 , a2 = vjj0 

j=0 j0=0 j=0 j0=1�−1P 
where vjj0 is the (j, j0)th element of Σ−1. Let us call a1 = 

N
� Pr rP 

and a3 = vjj0 . Then, the third row of X0 iΣ
−1Xi is 

j=1 j0=1 i=1 

⎞⎠

�� 
0, −1 , 1 .(1−pe)a3 pe(1−pe)a3 
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We also have that ⎛ ⎞ r r rP P P 
vj0 vj1 · · · vjr ⎜ ⎟

j=0 j=0 j=0⎜ ⎟ 
r r r⎜ P P P ⎟ 

X0 iΣ
−1 = ⎜ vj0 vj1 · · · vjr ⎟ .⎜ ⎟

j=1 j=1 j=1⎜ ⎟ 
r r r⎝ P P P ⎠ 

ki vj0 ki vj1 · · · ki vjr 
j=1 j=1 j=1 

So, we can deduce ⎡ ⎤ 
N

!−1X ⎣ X0 iΣ
−1Xi X0 iΣ

−1⎦ = 
i=1 

[3]! ! ! 
r � � r � �1 P P

1 vj0 −1 + ki , . . . , 1 −1 + ki . 
N (1−pe)a3 pe (1−pe)a3 

vjr pe 
j=1 j=1 

Then, ⎛ ⎞⎡ ⎤ 
N N

!−1X X 
β̂2 = ⎜⎣ X0 iΣ

−1Xi X0 iΣ
−1⎦ Yi 

⎟ 
=⎝ ⎠

i=1 i=1 
[3]! ! ! ! 

N � � � � 
1 P 

vj0 −1 + ki , . . . , 1 P 
vjr −1 + ki Yi 

1 X r r

(1−pe)a3 pe (1−pe)a3 peN j=1 j=1i=1 ! ! ! 
r r XP P 1 

N

−1 −1 = 
a3 

vj0 , . . . , vjr (I {ki = 0} Yi)a3 
j=1 j=1 N(1 − pe) ! ! ! i=1 

r r XP P 1 
N

+ 1 vj0 , . . . , 1 vjr (I {ki = 0} Yi)a3 a3 
j=1 j=1 Npe ! i=1 ! ! 

r Pr �P �
¯= 1 vj0 , . . . , 1 vjr Y1 − Ȳ0 . 

a3 a3 
j=1 j=1 

So, the c0 vector is ! ! ! 
r rP P

1 1 vj0 , . . . , vjr . 
a3 a3 

j=1 j=1 

The inverse of a CS matrix has diagonal elements 

1 1 + ρ(r − 2) − ρ2(r − 1) 
σ2 (1 − ρ)2 (1 + rρ) 
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and off-diagonal elements 
1 −ρ 
σ2 (1 − ρ) (1 + rρ) 

(Graybill, 1983, theorem 8.3.4). Then, under CS, 

r rXX r 
a3 = vjj0 = ,

σ2(1 − ρ)(1 + rρ)
j=1 j0=1 

Xr −rρ 
vj0 = 

j=1 
σ2(1 − ρ)(1 + rρ) 

and Xr
1 

vjj0 = , j = 1, . . . , r. 
j=1 

σ2(1 − ρ)(1 + rρ)� � � �
ˆ 1 1 ¯Therefore, β2 = −ρ, 

r , . . . , 
r Y1 − Ȳ0 and we can see that we get the � � 

same vector c0 = −ρ, 1 
r , · · · , 

1 
r that Frison and Pocock (1992) derived for their 

”ANCOVA” analysis under CS. 

Under the LDD hypothesis in clinical trials, the difference vector (µ1 − µ0) is as-

sumed to be proportional to (0, 1, 2, . . . , r), i.e. there is no difference at baseline, due 

to randomization, and afterwards the difference between the two groups changes 

linearly with time. This situation can be characterized by the following model: 

E (Yij |Xij ) = β1tj + β2kitj , (A.3) 

where β2 is the difference in the rates of change in the two groups. The estimator 

of the parameter of interest is ⎛ ⎞ 
N

⎡ 
N

!−1 
⎤ X X⎜ ⎟

β̂2 = ⎝⎣ X0 iΣ
−1Xi X0 iΣ

−1⎦ Yi⎠, 
i=1 i=1 

[2] 
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where the subscript [2] refers to the second row of the matrix. We have 

N NXX 
. . 

⎞ ⎟⎠ 
⎛ ⎜⎜⎜⎜⎝ 

0 0 

j kij 

⎞ ⎟⎟⎟⎟⎠ 
⎛ ⎜⎝ �� v00 

0 j r 
0 kij kir 

X0 iΣ
−1Xi = . .. . 

i=1 i=1 

Pr rP 

v0r · · · vrr 
r kir Pr rP⎛ ⎜⎜⎝ jj0vjj0 

j=0 j0=0 Pr rP = N , 
jj0 jj0pe vjj0 pe vjj0 

j=0 j0=0 j=0 j0=0 

Pr r

where vjj0 is the (j, j0)th element of Σ−1. Then, 

P NX !−1 �� 
1 pe −peX0 iΣ

−1Xi = . −pe 1 
i=1 Npe(1 − pe) jj0vjj0 

j=0 j0=0 

We can also derive X0 iΣ−1. The j0th term (j0 = 0, . . . , r ) in the first row of X0 iΣ−1 

rP 
has the form 

j=0 
jvjj0 , and the j0th term (j0 = 0, . . . , r ) in the second row of X0 iΣ−1 

rP 
has the form ki 

j=0 
jvjj0 . Thus, the j0th term (j0 = 0, . . . , r ) in 

⎡ ⎤!−1XN

X0 iΣ
−1Xi X0 iΣ

−1 

i=1 

⎣ ⎦ 
[2] 

has the expression ! XXr r

−pe jvjj0 + ki jvjj0 . 
1 Pr rP 

Npe(1 − pe) jj0vjj0 j=0 j=0 
j=0 j0=0 

⎞ ⎟⎟⎠
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Then, ⎛ ⎞ 
N

⎡ 
N

!−1 
⎤ X X⎜ ⎟

β̂2 = ⎝⎣ X0 iΣ
−1Xi X0 iΣ

−1⎦ Yi⎠ = 
i=1 i=1 

[2] ! ! 
N r r rX X X X1 

r r −pe jvjj0 + ki jvjj0 Yij0P P 
Npe(1 − pe) jj0vjj0 i=1 j0=0 j=0 j=0 

j=0 j0=0 

1 
= r rP P 

jj0vjj0 

j=0 j0=0 ⎧ ⎫PN NP! !⎪⎪ r (I {ki = 0} Yij0 ) r (I {ki = 1} Yij0 )⎪⎪⎨ r r ⎬X X X X 
i=1 i=1− jvjj0 + jvjj0 

N(1 − pe) Npe⎪⎪ ⎪⎪⎩j0=0 j=0 j0=0 j=0 ⎭ ( ! ! )
1 

r r r rX X X X 
¯= ¯ − . r r jvjj0 Y1j0 jvjj0 Y0j0P P 

jj0vjj0 j0=0 j=0 j0=0 j=0 
j=0 j0=0 

So, the j0th component of the c0 vector is 

rP 
jvjj0 

j=0 
. r rP P 

jj0vjj0 

j=0 j0=0 

Under CS, " # 
r � � rX 1 1 + ρ(r − 2) − ρ2(r − 1) X 

jvjj0 = j0 − ρ j + ρj0 
σ2(1 − ρ) (1 + rρ) (1 − ρ)

j=0 j=0 � � 
1 r(r + 1)ρ 

= j0 (1 + rρ) − 
σ2(1 − ρ) (1 + rρ) 2 

and XXr r
r(r + 1)(2 + r(4 + (r − 1)ρ))

jj0 vjj0 = 
12σ2(1 − ρ) (1 + rρ)

j=0 j0=0 

Therefore, j0th component of the c0 vector is h i 
12 j0 (1 + rρ) − r(r+1)ρ 

2 12j0 + 6ρr (2j0 − r − 1) 
= , 

r(r + 1)(2 + r(4 + (r − 1)ρ)) r(r + 1)(ρr(r − 1) + 2 (2r + 1)
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which is the expression that Frison and Pocock (1997) derived for CS. 

In this paper we deal with observational studies, where the exposed and the un-

exposed already have a different expected value of the response at baseline. The 

CMD hypothesis in observational studies specifies that the mean group differences 

are constant over time, i.e. they are proportional to (1, . . . , 1). The mean differ-

ence between the two groups is constant at all time points and equal to p1µ00, 

i.e. (µ1 − µ0) = p1µ00. The parameter of interest under CMD is p1, and one 

wants to test H0 : p1 = 0 vs. HA : p1 6= 0. Under the CMD hypothesis for ob-

servational studies, the ”ANCOVA” model is still unbiased under the null. We � � � � � � 0have E c0(Ȳ1 − Ȳ0)| H0 = c0E (Ȳ1 − Ȳ0)| H0 = c p1µ00, · · · , p1µ00 . Since � � 
p1 = 0 under H0, we have E c0(Ȳ1 − Ȳ0)| H0 = 0 for any c0, and any vector c0 

produces unbiased estimators under the null. The optimal test is proportional to 

(µ1 − µ0)Σ
−1 (Frison and Pocock, 1997), so in an observational study it is propor-

tional to (1, . . . , 1)Σ−1. Since ANCOVA is proportional to (0, 1, . . . , 1) Σ−1, it is not 

the optimal test for CMD in observational studies. 

The LDD hypothesis in observational studies specifies that the group mean differ-

ences are a linear function of time, but there is already a difference in the group 

means at baseline. In that case, 

p2p3 
µ1 − µ0 = (p1 + tj )µ00. 

τ 

The parameter of interest under LDD is p3, and one wants to test H0 : p3 = 0 vs. 

HA : p3 6= 0. We have, 

� � � � 
E c 0(Ȳ1 − Ȳ0)| H0 = c 0E (Ȳ1 − Ȳ0)| H0 �� �0 � �00 p2p3 p2p3 � 0 = c (p1 + 

τ t0)µ00, · · · , (p1 + 
τ tr)µ00 � = c p1µ00, · · · , p1µ00 

H0:p3=0 

= p1µ00c 
0 (1, . . . , 1)0 . 

So, if there are differences at baseline, i.e. p1 6= 0, a test will be unbiased if and only 

if the sum of the components of c0 is zero. For ”SLAIN”, the j0th component of c0 
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is 
rP 

jvjj0 

j=0 
,r rP P 

jj0vjj0 

j=0 j0=0 

r rP P 
so the test will be unbiased under the null if and only if jvjj0 = 0. This will 

j0=0 j=0 

not be true in general. For example, under CS, 

XXr r
r(r + 1) 

jvjj0 = . 
2σ2 (1 + rρ)

j0=0 j=0 

Therefore, ”SLAIN” is biased in observational studies. 

A.3 Proof that two-stage and GLS are equivalent ap-
proaches under CS or RS for V (t0) = 0 

In the setting where all subjects are observed at the same set of time points, this 

appendix will proof: 

(i) That the estimator of the difference of the rates of change in the two exposure 

groups obtained using the summary measure (two-stage) approach is alge-

braically equivalent to the estimator of γ3 obtained from fitting model (2.6) 

by OLS. 

(ii) That when the covariance matrix Σi = Σ has a CS or RS structure, the esti-

mators from model (2.6) obtained by OLS and GLS are algebraically equiv-

alent. Given (i), this implies that the estimator from the summary measure 

approach is algebraically equivalent to the GLS estimator. We also show that 

this is not the case for DEX. 

Given (i) and (ii), since the estimators from the summary measure (two-stage) ap-� � � �
¯ ¯proach, and GLS are the same linear combination of Y1 − Ȳ0 , d0 Y1 − Ȳ0 , once 
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we assume a covariance structure for V ar [Yi|Xi] = Σi, the test statistic for the two 

methods is also equivalent and equal to � � 
d0 Ȳ1 − Ȳ0 

T = q � � �� , 
V ar d0 Ȳ1 − Ȳ0 

where 

� � �� � �
¯ ¯V ar d0 Y1 − Ȳ0 = d0V ar Y1 − Ȳ0 d � � 

1 1 d0Σd 
= d0 V ar (Yi,ki=1) + V ar (Yi,ki=0) d = . 

Npe N(1 − pe) Npe(1 − pe) 

Proof of (i) 

Summary measure (two-stage) approach 

Let Zi be a (r+1)×2 matrix that contains a column of ones and the column of times 

for participant i. Since all subjects are observed at the same set of time points then 

Zi = Z. Here, the summary measure is the subject-specific OLS slope associated 

with time from the regression of Yi on Zi = Z. Let us call β̂i, i = 1, . . . , N , the 

(2 × 1) vector containing the subject-specific intercept and slope of the regression, 

where β̂i = (Z0Z)−1 Z0Yi. The subject-specific intercepts and slopes are averaged 

in each exposure group as follows, 

N NPP 
(Z0Z)−1 Z0Yi I {ki = k} YiI {ki = k}

ˆ i=1 −1 
Z0 i=1 −1

βk = = (Z0Z) = (Z0Z) Z0Ȳk, 
nk nk 

where I {ki = k} is an indicator variable that takes the value one when ki = k and 

zero otherwise; nk is the number of participants in exposure group k, k = 0, 1; and 

Ȳk is the average of Yi in group k. Since we are interested in the second component � � 
of β̂k, the slope associated with time, we define S̄k = (Z0Z)−1 Z0 

(2) 
Ȳk, where the 

subscript (2) indicates the second row of the matrix (Z0Z)−1 Z0. We are interested � � � −1 � � �
¯in the difference, which is S̄1 − S̄0 = (Z0Z) Z0 

(2) 
Y1 − Ȳ0 . 
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OLS approach 

With the OLS approach, we fit all the data at the same time, using 

E (Yij |Xij ) = γ0 + γ1tij + γ2ki + γ3 (tij × ki) , 

and our interest in on γ3. Reparameterizing, we can fit model 

E (Yij |Xij) = γ0 
∗ (1 − ki) + γ1 

∗ (1 − ki) tij + γ2 
∗ ki + γ3 

∗ kitij , 

and our parameter of interest is now γ3 = γ3 
∗ − γ1 

∗. The OLS estimator of the latter 

model can be derived as !−1 ! XN NX 
γ ∗ −1 

X0ˆ = (X0X) X0Y = X0 iXi iYi , 
i=1 i=1 � � 

where Xi is the covariate matrix for subject i and can be written as Xi = Z 0 � � 
if participant i is unexposed and Xi = 0 Z if exposed. Then, ! 

N � �X )Z0ZN(1 − pe 0 
X0 iXi = ,

0 NpeZ
0Z 

i=1 !−1 ! 
N −1X 1 1 (Z0Z) 0 
X0 (1−pe) 

iXi = −1 ,1 (Z0Z)N 0 
i=1 pe 

and ! ! ! 
N � � N � � NX Z0 X X0 
X0 iYi = YiI {ki = 0} + YiI {ki = 1}

0 Z0 
i=1 i=1 i=1� � 

N(1 − pe)Z
0Ȳ0 = ,

NpeZ
0Ȳ1 

so � 
(Z0Z)−1 Z0Ȳ0 

� 
γ ∗ ˆ = −1 . 

(Z0Z) Z0Ȳ1 

To compute γ̂3 = γ̂3 
∗−γ̂1 

∗ we need to subtract the second from the fourth component, � � � �
¯so γ̂3 = (Z0Z)−1 Z0 

(2) 
Y1 − Ȳ0 as in the two-stage approach. 
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Proof of (ii) 

A necessary and sufficient condition for the OLS and GLS estimators to be the 

same is HV = VH (Puntanen and Styan, 1989, condition Z5), where H is the hat 

matrix H = X(X0X)−1X0 , X is our case the N(r + 1) × 4 matrix of covariates based 

on model (2.6), and V is the N(r + 1) × N(r + 1) covariance matrix of Y, which 

is a block-diagonal matrix with the diagonal blocks equal to Σ. As in the OLS 

derivation, we reparameterize the model as 

E (Yij |Xij) = γ0 
∗ (1 − ki) + γ1 

∗ (1 − ki) tij + γ2 
∗ ki + γ3 

∗ kitij , 

and for convenience we sort X sot that the first N(1 − pe) participants are unex-� � 
posed and therefore have Xi = Z 0 , and the following Npe are exposed and � � 
have Xi = 0 Z . As derived in the OLS case, ! 

1 (Z0Z)−1 00 
(1−pe)(X0X)−1 = 

N 
1 

0 1 (Z0Z)−1 . 
pe 

Then, it can be derived that � � 
1 00H11H = X(X0X)−1X0 = ,
N 0 H22 

where H11 is a block matrix of N(1 − pe) × N(1 − pe) blocks, each block being equal 

to 
1−

1 
pe 
Z (Z0Z)−1 Z0; and H22 is a block matrix with Npe × Npe blocks, each block 

being equal to 
p
1 
e 
Z (Z0Z)−1 Z0. Since V is block diagonal with the diagonal blocks 

equal to Σ, it follows that HV is going to be of the form � � 
1 (HV)11 00 

HV = ,
N 0 (HV)22 

where (HV)11 is a block matrix of N(1 − pe) × N(1 − pe) blocks, each block being 

equal to 1 Z (Z0Z)−1 Z0Σ; and (HV) is a block matrix with Npe × Npe blocks,
1−pe 22 

each block being equal to 
p
1 
e 
Z (Z0Z)−1 Z0Σ. Similarly, we can derive that VH is of 

the form � � 
1 (VH)11 00 

VH = ,
N 0 (VH)22 
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where (VH)11 is a block matrix of N(1 − pe) × N(1 − pe) blocks, each block being 

equal to 1 ΣZ (Z0Z)−1 Z0; and (VH) is a block matrix with Npe × Npe blocks,
1−pe 22 

each block being equal to 
p
1 
e 
ΣZ (Z0Z)−1 Z0. Clearly, then, proving that HV = VH 

−1 −1is equivalent to proving that Z (Z0Z) Z0Σ = ΣZ (Z0Z) Z0 . 

−1 −1Next, we show that the Z (Z0Z) Z0Σ = ΣZ (Z0Z) Z0 holds for Σ having a CS or 

RS structure and therefore the OLS and GLS estimators are algebraically equivalent 

in those cases. We also show that the condition does not hold for DEX. 

CS 

Under CS, Σ = σ2 (ρ110 + (1 − ρ)I), where I is the (r + 1) × (r + 1) identity matrix 

and 1 a (r + 1) × 1 vector of ones. Then, 

−1 −1
Z (Z0Z) Z0Σ = σ2Z (Z0Z) Z0 (ρ110 + (1 − ρ)I) 

−1 −1 
= σ2ρZ (Z0Z) Z0110 + σ2(1 − ρ)Z (Z0Z) Z0 . 

Since Z (Z0Z)−1 Z0 is a projection matrix in the subspace defined by columns of Z, 
−1 −1and the first column of Zis 1, then Z (Z0Z) Z01 = 1 and Z (Z0Z) Z0Σ = σ2ρ110 + 

σ2(1 − ρ)Z (Z0Z)−1 Z0. Now, we derive an expression for 

−1 −1
ΣZ (Z0Z) Z0 = σ2 (ρ110 + (1 − ρ)I) Z (Z0Z) Z0 

−1 −1 
= σ2ρ110Z (Z0Z) Z0 + σ2(1 − ρ)Z (Z0Z) Z0 . 

For the same reasoning used above, 10Z (Z0Z)−1 Z0 = 10 , and therefore 
−1 −1ΣZ (Z0Z) Z0 = σ2ρ110 + σ2(1 − ρ)Z (Z0Z) Z0, which is the same expression we 

derived for Z (Z0Z)−1 Z0Σ. 
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RS 

Under RS, Σ = ZDZ0 + σw
2 I. Then, 

−1 −1
Z (Z0Z) Z0Σ = Z (Z0Z) Z0 

� 
ZDZ0 + σw

2 I 

−1 −1 −1 
= Z (Z0Z) Z0ZDZ0 + σw

2 Z (Z0Z) Z0 = ZDZ0 + σw
2 Z (Z0Z) Z0 . 

Now, we derive an expression for 

ΣZ (Z0Z)
−1 � 
Z0 = ZDZ0 + σw

2 I Z (Z0Z)
−1 −1
Z0 = ZDZ0 + σw

2 Z (Z0Z) Z0 , 

which is the same expression we derived for Z (Z0Z)−1 Z0Σ. 

DEX 

−1 −1A counterexample is enough to show that Z (Z0Z) Z0Σ = ΣZ (Z0Z) Z0 does not 

hold for DEX. With r = 2 then 

Z (Z0Z)
−1 
Z0 = 

⎛⎝ 5/6 1/3 −1/6 
1/3 1/3 1/3 

⎞⎠ . 
−1/6 1/3 5/6 

If we take σ2 = 1, ρ = 0.8 and θ = 1 (AR(1) covariance structure) then 

Σ = 

⎛⎝ 1 0.8 0.64 
0.8 1 0.8 

⎞⎠ . 
0.64 0.8 1 

Now, 

Z (Z0Z)
−1 
Z0Σ = 

⎛⎝ 5/6 1/3 −1/6 
1/3 1/3 1/3 

⎛⎝ ⎞⎠ 1 0.8 0.64 
0.8 1 0.8 

⎞⎠ 
−1/6 1/3 5/6 0.64 0.8 

= 

1 ⎛⎝ 0.993 0.866 0.633 
0.813 0.866 0.813 

⎞⎠ 
0.633 0.866 0.993 
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and 

ΣZ (Z0Z)
−1 
Z0 = 

⎛⎝ 1 0.8 0.64 
0.8 1 0.8 

⎛⎝ ⎞⎠ 5/6 1/3 −1/6 
1/3 1/3 1/3 

⎞⎠ 
0.64 0.8 1 −1/6 1/3 5/6 

0.993 0.813 0.633 
⎛⎝ 0.866 0.866 0.866= . 

0.633 0.813 0.993 

We can see that the the [2,1], [1,2], [3,2] and [2,3] components differ, so the condition 

does not hold. 

Pr r

A.4 Proof that c0ΣBc is the same for r = 1 and r = 2 

P 

under LDD and V (t0) = 0 with fixed follow-up pe-
riod τ and equidistant time points. 

When V (t0) = 0, formula (3.4) is ! 
2vjj0 r

Pr r r rPP 

0j=0 j =0 

P 
c 0ΣBc = , 

pe(1 − pe)τ 2 det(A)

where the term vjj0 is the [j, j0] component of the inverse of Σ and ⎛ ⎜⎜⎝ 
⎞ ⎟⎟⎠ 

⎛ ⎜⎝ 
⎞ ⎟⎠�� 1 0 

. . . . . . 

vjj0 jvjj0 
1 · · · 1 Pr r r rPPP j=0 j0=0 j=0 j0=0 Σ−1A = = . 
0 · · · rjj0jvjj0 vjj0 1 r 

j=0 j0=0 j=0 j0=0 

Let �� 
σ11 σ1τΣ1 = ,
σ1τ σττ 

the covariance matrix when r = 1 and 

Σ2 = 

⎛⎝ σ11 σ1,τ/2 σ1,τ 

σ1,τ/2 στ/2,τ/2 στ/2,τ 

⎞⎠ 
σ1,τ στ/2,τ στ,τ 

when r = 2. Then, c0ΣBc will be the same for r = 1 and r = 2 if and only if 

A1[1, 1] 4A2[1, 1] 
= ,

det(A1) det(A2) 
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where A1 is the A matrix when r = 1 and A2 is the A matrix when r = 2. We can 

now derive � � 
1 

Σ−1 σττ = 1 σ11σττ − σ1
2 
τ −σ1τ σ11 

and 

1 
Σ−2

1 = � � 
σ2−2σ1,τ σ1,τ/2στ/2,τ + σ1

2 
,τ στ/2,τ/2 + σ1

2 
,τ/2στ,τ + σ11 τ/2,τ − στ/2,τ/2στ,τ ⎛ ⎞ 

σ2 
τ/2,τ − στ/2,τ/2στ,τ ⎝ σ2 ⎠σ1,τ/2στ,τ − σ1,τ στ/2,τ 1,τ − σ11στ,τ 

σ2σ1,τ στ/2,τ/2 − σ1,τ/2στ/2,τ σ11στ/2,τ − σ1,τ σ1,τ/2 1,τ/2 − σ11στ/2,τ/2 

Also, � �� �� � 
1 1 1 σττ −σ1τ 1 0 

A1 = 
σ11σττ − σ2 0 1 −σ1τ σ11 1 1

1τ � � 
1 σ11 − 2σ1τ + σττ σ11 − σ1τ = 

σ11σττ − σ1
2 
τ σ11 − σ1τ σ11 

, 

1 
det(A1) = 

σ11σττ − σ1
2 
τ 

and 
A1[1, 1] 

= σ11 − 2σ1τ + σττ ;
det(A1) 

and 

1 
A2 = � � 

σ2−2σ1,τ σ1,τ/2στ/2,τ + σ1
2 
,τ στ/2,τ/2 + σ2 στ,τ + σ11 − στ/2,τ/2στ,τ 1,τ/2 τ/2,τ � � 

1 1 1 
0 1 2 ⎛ ⎞⎛ ⎞ 

σ2 
τ/2,τ − στ/2,τ/2στ,τ 1 0 ⎝ σ1,τ/2στ,τ − σ1,τ στ/2,τ σ1

2 
,τ − σ11στ,τ ⎠⎝ 1 1 ⎠ . 

σ1,τ στ/2,τ/2 − σ1,τ/2στ/2,τ σ11στ/2,τ − σ1,τ σ1,τ/2 σ1
2 
,τ/2 − σ11στ/2,τ/2 1 2 

It can be derived that 

A2[1, 1] 1 
= � � 

det(A2) σ11 + 2σ1,τ − 4 σ1,τ/2 + στ/2,τ − στ/2,τ/2 + στ,τ � � �2 � � 
−σ1

2 
,τ − σ1,τ/2 − στ/2,τ + 2σ1,τ σ1,τ/2 + στ/2,τ − στ/2,τ/2 + � � � � � 

στ/2,τ/2 − 2σ1,τ/2 στ,τ + σ11 στ/2,τ/2 + στ,τ − 2στ/2,τ 
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Then, 
A1[1, 1] 4A2[1, 1] 

= 
det(A1) det(A2) 

if and only if 

4 
= � �σ11 − 2σ1τ + σττ 

σ11 + 2σ1,τ − 4 σ1,τ/2 + στ/2,τ − στ/2,τ/2 + στ,τ � � �2 � � 
−σ1

2 
,τ − σ1,τ/2 − στ/2,τ + 2σ1,τ σ1,τ/2 + στ/2,τ − στ/2,τ/2 + � � � � � 

στ/2,τ/2 − 2σ1,τ/2 στ,τ + σ11 στ/2,τ/2 + στ,τ − 2στ/2,τ , � � 
which with some algebra it reduces to σ11 − σττ = 2 σ1,τ/2 − στ/2,τ . So, c0ΣBc � � 
will be the same for r = 1 and r = 2 if and only if σ11 − σττ = 2 σ1,τ/2 − στ/2,τ . 

We can check that for the covariance structures used in the paper, i.e. compound 

symmetry (CS) (section 3.2), damped exponential (DEX) (section 3.3) and random 

intercepts and slopes (RS) (section 3.4) this condition is met. For CS, ⎛ ⎞ ⎛ ⎞ 
σ11 σ1,τ/2 σ1,τ 1 ρ ρ 

Σ2 = ⎝ σ1,τ/2 στ/2,τ/2 στ/2,τ ⎠ = σ2 ⎝ ρ 1 ρ ⎠ , 
σ1,τ στ/2,τ στ,τ ρ ρ 1 � � 

so σ11 − σττ = σ2 (1 − 1) = 0 and 2 σ1,τ/2 − στ/2,τ = 2σ2(ρ − ρ) = 0 and the 

condition holds. For DEX, ⎛ ⎞ ⎛ ⎞ 
ρ2θ 

σ11 σ1,τ/2 σ1,τ 1 ρ ⎝ ⎠ = σ2 ⎝ ⎠Σ2 = σ1,τ/2 στ/2,τ/2 στ/2,τ ρ 1 ρ , 
ρ2θσ1,τ στ/2,τ στ,τ ρ 1 � � 

so σ11 − σττ = σ2 (1 − 1) = 0 and 2 σ1,τ/2 − στ/2,τ = 2σ2(ρ − ρ) = 0 and the 

condition holds. For RS, ⎛ ⎞ 
σ11 σ1,τ/2 σ1,τ ⎝ ⎠Σ2 = σ1,τ/2 στ/2,τ/2 στ/2,τ = 
σ1,τ στ/2,τ στ,τ !

2 2+ σσb0 w 
σ2 

b0 

2 
b0 

2 
b1 

+ 2ρb0b1 σb0 σb1 
2+ ρb0b1 + σ + σσb0 σb1 σ ,w 

σ2 
b0 

2 
b0 

2 
b1 

σ2 
b0 

+ 4σ2 
b1 

+ 4ρb0b1 σb0 σb1 + σ2 
w+ 2ρb0 b1 + 3ρb0b1 σb0 σb1 + 2σσb0 σb1 σ

so 

= σ2 + σ2 − σ2 − 4σ2 − σ2 = −4σ2σ11 − σττ b0 w b0 b1 
− 4ρb0b1 σb0 σb1 w b1 

− 4ρb0b1 σb0 σb1 
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and 

� � � � 
2 σ1,τ/2 − στ/2,τ = 2 σb

2 
0 
+ ρb0b1 σb0 σb1 − σb

2 
0 
− 3ρb0b1 σb0 σb1 − 2σb

2 
1 

= −4σ2 
b1 
− 4ρb0b1 σb0 σb1 

and the condition holds. 

A.5 Effect of pe on r when Σi = Σ 

When Σi = Σ ∀i, we can use equations (3.2) and (3.4) to write � �2 
(c0ΣBc) zπ + z1−α/2 f(r)

N = = ,
(c0BHA )

2 pe(1 − pe)

where f(r) depends on r but not on pe. We can define r implicitly as the value/s 

solving the equation F (r) = 0, where 

f(r)
F (r) = N − . 

pe(1 − pe) 

Implicitly differentiating both sides of F (r) = 0, we obtain 

∂F (r) ∂r f(r)(1 − 2pe)
= 0 ⇔ = . 

∂pe ∂pe f 0(r)pe(1 − pe) 

The value of pe that minimizes r solves ∂r = 0, and results in a single root, pe = 0.5.
∂pe 

Since (1 − 2pe) > 0 for pe < 0.5 and less than zero for pe > 0.5, r has a maximum 

or a minimum at pe = 0.5. The sign of f(r) determines whether it is a maximum 
f 0(r) 

or a minimum. Since the variance c0ΣBc is always positive so is f(r), and since 
f (r)the variance decreases as r increases, f 0(r) is negative. Therefore is negative 
f 0(r) 

∂r ∂r and < 0 for pe < 0.5 and > 0 for pe > 0.5, implying that r is minimum at 
∂pe ∂pe 

pe = 0.5. 
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A.6 When is there a limit to power less than 100% as 
r →∞? 

A.6.1 CMD and CS 

The inverse of a CS matrix has diagonal elements 

1 1 + ρ(r − 2) − ρ2(r − 1) 
σ2 (1 − ρ)2 (1 + rρ) 

and off-diagonal elements 
1 −ρ 
σ2 (1 − ρ) (1 + rρ) 

(Graybill, 1983, theorem 8.3.4). The sum of a row or a column of the inverse, 
rP 

vjj0 , is 
j0=0 � � 

1 1 + ρ(r − 2) − ρ2(r − 1) rρ 1 − = 
σ2 (1 − ρ)2 (1 + rρ) (1 − ρ) (1 + rρ) σ2 (1 + rρ) 

and therefore XXr r
r + 1 

vjj0 = . 
σ2(1 + rρ)

j=0 j0=0 

Also, XX X Xr r r r
r(r + 1) 

jvjj0 = j vjj0 = ,
2σ2 (1 + rρ)

j=0 j0=0 j=0 j0=0 

and XXr r
r(r + 1)(2 + r(4 + (r − 1)ρ))

jj0 vjj0 = . 
12σ2(1 − ρ) (1 + rρ)

j=0 j0=0 

Then, ! ! !2r r r r r rXX XX XX r(r + 1)2(r + 2) 
det(A) = vjj0 jj0 vjj0 − jvjj0 = . 

12σ4(1 − ρ) (1 + rρ)
j=0 j0=0 j=0 j0=0 j=0 j0=0 

Plugging in these expressions in to equation (3.2), we have that under CMD and 

CS 

σ2(1 + rρ) (r(r + 2)(1 + rρ)s2 + 12(1 − ρ)V (t0)) 
c 0ΣBc = � � � � . 

pe(1 − pe)(r + 1) r(r + 2)(1 + rρ)s2 + 12(1 − ρ) 1 − ρ2
e,t0 

V (t0) 
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� � 

Then, by comparing the highest order terms of r in the numerator and denomina-

tor of c0ΣBc, we can derive that 

σ2(1 + rρ) (r(r + 2)(1 + rρ)s2)
lim c 0ΣBc = lim = 
r→∞ r→∞ pe(1 − pe)(r + 1) (r(r + 2)(1 + rρ)s2) 

σ2(1 + rρ) σ2ρ 
lim = . 
r→∞ pe(1 − pe)(r + 1) pe(1 − pe) 

Since under CS, the covariance matrix of the response, Σ, does not depend on s or 

τ , the results apply to both the fixed s and fixed τ design problems. 

A.6.2 LDD and CS 

Applying the results of Appendix A.6.1 to equation (3.4), we find that 

12σ2(1 − ρ)(1 − rρ) 
c 0ΣBc = � � . 

pe(1 − pe)(r + 1) r(r + 2)(1 + rρ) s2 + 12(1 − ρ) 1 − ρ2
e,t0 

V (t0) 

Since the denominator is a polynomial of fourth degree of r while the numerator 

is of first degree, then lim c0ΣBc = 0. 
r→∞ 

Since under CS, the covariance matrix of the response, Σ, does not depend on s or 

τ , the results apply to both the fixed s and fixed τ design problems. 

A.6.3 CMD and AR(1) 

A.6.3.1 When s is fixed 

The AR(1) covariance matrix is given by (3.8) with θ = 1, and its inverse is a tridi-

agonal matrix with the form ⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

1 −ρs 0 0 · · · 0 
−ρs 1 + ρ2s −ρs 0 0 

. . .0 −ρs 1 + ρ2s . . . . . 
1 . 

Σ−1 = . .(1 − ρ2s) σ2 . . . −ρs0 0 . 0 
. .. .. . −ρs 1 + ρ2s −ρs 

0 0 · · · 0 −ρs 1 
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r rP P 
(Graybill, 1983, page 201). To use equation (3.2) we need expressions for vjj0 , 

j=0 j0=0 
r r r rP P P P 

jvjj0 and jj0vjj0 . It can be easily shown that 
j=0 j0=0 j=0 j0=0 XXr r

(1 + r + ρs − rρs) 
vjj0 = . 

σ2 (1 + ρs)
j=0 j0=0 

Also, XXr r
r (1 − ρs) (1 + r (1 − ρs) + ρs)

jvjj0 = 
2 (1 − ρ2s) σ2 

j=0 j0=0 

and ! 
r r

r � � � 2�XX 
jj0 vjj0 = 1 + 4ρs + ρ2s + 3r 1 − ρ2s + 2r 2 (1 − ρs) . 

6 (1 − ρ2s) σ2 
j=0 j0=0 

When V (t0) = 0, we can use formula (3.3) to find 

σ2(1 + ρs) 
c 0ΣBc = 

pe(1 − pe)(1 + r + ρs − rρs) 

as given by Table 1. This formula has a first-order polynomial in r in the denom-

inator, and has no terms involving r in the numerator, so lim c0ΣBc = 0. If 
r→∞ 

V (t0) > 0, the formula is very long c0ΣBc and we used Mathematica (Wolfram 

Research Inc., 2005) to obtain the formula and compute the limit, which was zero. 

Therefore, lim c0ΣBc = 0 when V (t0) > 0. 
r→∞ 

A.6.3.2 When τ is fixed 

When τ is fixed, we substitute s with τ/r in equation (3.2). So, when V (t0) = 0, 

σ2(1 + ρτ/r) 
c 0ΣBc = , 

pe(1 − pe)(1 + r + ρτ/r − rρτ/r)

and 
σ2(1 + ρτ/r)

lim c 0ΣBc = lim . 
r→∞ r→∞ pe(1 − pe) [1 + ρτ/r + r(1 − ρτ/r)] 

By l’Hopital’s rule, ˆ lim r(1 − ρτ/r) = −τ log ρ, and then 
r→∞ 

2σ2 

lim c 0ΣBc = . 
r→∞ pe(1 − pe) [2 − τ log ρ] 
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If V (t0) > 0, we used Mathematica (Wolfram Research Inc., 2005) to derive the 

limit, which in this case has a very complicated expression, 

�� � � � � 
2σ2 τ 3 + 12V (t0)τ (log(ρ))2 − 6 τ 2 + 4V (t0) log(ρ) + 12τ 

[pe(1 − pe)(2 − τ log(ρ))]−1 � � � 2τ 3 + 12V (t0)τ (log(ρ)) − 12V (t0)(τ log(ρ) − 2)ρ2 log(ρ)e,t0 �−1� � 
− 6 τ 2 + 4V (t0) log(ρ) + 12τ 

A.6.4 LDD and AR(1) 

A.6.4.1 When s is fixed 

Using the results from Appendix A.6.3 and applying formula (3.4) to the case 

V (t0) = 0, we find that 

12σ2 (1 − ρ2s) [ r s2pe(1 − pe)]
−1 

c 0ΣBc = 
(2 + r(r + 3) + 8ρs − 2r2ρs + (r − 2)(r − 1)ρ2s) 

as shown in Table 1. Since the denominator is a second degree polynomial of r 

while the numerator has no terms involving r, lim c0ΣBc = 0. If V (t0) > 0, we 
r→∞ 

used Mathematica (Wolfram Research Inc., 2005) and found that the limit was also 

zero. 

A.6.4.2 When τ is fixed 

When τ is fixed, we substitute s with τ/r. So, when V (t0) = 0, 

12σ2 (1 − ρ2τ/r) r [ τ 2 −1 
pe(1 − pe)]

c 0ΣBc = ,
2ρτ/r + (r − 2)(r − 1)ρ2τ/r)(2 + r(r + 3) + 8ρτ/r − 2r

as shown in Table 1. This expression can be rewritten as 

12σ2 (1 − ρ2τ /r) [pe(1 − pe)]
−1 h i . 

τ 2 r (1 − ρτ/r)
2 
+ (3 (1 − ρ2τ /r)) + 1 

r (2 + 8ρτ /r + 2ρ2τ/r) 
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� 
� 

Then, to compute lim c0ΣBc we note that the limit of the numerator is 
r→∞ 

12σ2 lim (1 − ρ2τ/r) = 0. In the denominator, the limit of last two terms is zero, and 
r→∞ 

l’Hôpital’s rule can be used to show that the limit of the first term is also zero. We 

repeatedly applied l’Hˆ 0ΣBc. With much algebra, opital’s rule to derive the limit of c

we found that 

24σ2 log ρ 
lim c 0ΣBc = � � . 

−12τ + 6τ 2 log ρ − τ 3 (log ρ)2r→∞ pe(1 − pe) 

If V (t0) > 0, using the expression derived for fixed s and substituting s by τ/r, we 

used Mathematica (Wolfram Research Inc., 2005) to derive the limit, which has a 

complicated expression, 

24σ2 log(ρ) [pe(1 − pe)] 

τ 3 + 12V (t0)τ 

� � 
(log(ρ))2 + 12V (t0)(τ log(ρ) − 2)ρ2 

e,t0 
− log(ρ) �−1� 

Pr r r rPPP 

+ 6 τ 2 + 4V (t0) log(ρ) − 12τ 

A.6.5 CMD, RS and V (t0) = 0 

We only find the limit of c0ΣBc when V (t0) = 0. The covariance matrix of the 

repeated measurements is Σi = ZiDZ
0 
i + σw

2 I, and since V (t0) = 0, Zi = Z and 

Σi = Σ = ZDZ0 + σw
2 I. The matrix Z is (r + 1) × 2 and contains a column of ones 

and the column of times (sj, j = 0, . . . , r). Note that formula (3.2) depends on ⎛ ⎜⎜⎝ 
⎞ ⎟⎟⎠Pr r r rPPP vjj0 jvjj0 

j=0 j0=0 j=0 j0=0A = 
jj0jvjj0 vjj0 

Pr r r rPPP 
j=0 j0=0 j=0 j0=0 

only through s2 det(A). For convenience, we define a new matrix ⎛ ⎜⎜⎝ 
⎞ ⎟⎟⎠ vjj0 s jvjj0 

Ã = P j=0 
r Pr r rPP j0=0 j=0 j0=0 = Z0Σ−1

Z, 
s jvjj0 s2 jj0vjj0 

j=0 j0=0 j=0 j0=0 
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� � 
˜ A = Z0Σ−1 −1where det A = s2 det(A). Then, ˜ Z = Z0 (ZDZ0 + σw

2 I) Z. Using the 

property 

� �−1 
B−1 G0C−1(GBG0 + C)−1 = C−1 − C−1G + G0C−1G , 

0 −1Z Z D

w 

which can be found in (Timm, 2002, property 8, page 46), we have that � �−1� �−1 1 1 1 1 
ZDZ0 + σw

2 I = I − IZ D−1 + Z0 IZ Z0I 
σ2 σ2 σ2 σ2 

w w w w� �−1
1 1 1 

D−1 Z0Z Z0 = I − Z + . 
σ2 σ4 σ2 

w w w 

w 

Now, 

� �−1 
Z0 ZDZ0 + σ2 I Zw � �−1

1 1 1 
= Z0Z − + Z0Z Z0Z 

σ2 σ4 σ2 

w 

w w w 

and using the property 

� �−1 
G−1 − G−1 G−1 + B−1 G−1 = (G + B)−1 , 

(Timm, 2002, property 6, page 46), 

� �−1 
Ã = Z0 ZDZ0 + σw

2 I Z � �−1 � �−11 1 1 
= Z0Z − Z0Z D−1 + Z0Z Z0Z = (Z0Z)

−1 
σw 

2 + D 
σ2 σ4 σ2 

w w w 

2+4r −6 
! � 

σ2 
�!−1 

σ2 (r+1)(r+2) s(r+1)(r+2) b0 
ρb0b1 σb0 σb1= + .w −6 12 σ2 

s(r+1)(r+2) s2r(r+1)(r+2) ρb0b1 σb0 σb1 b1 

We computed this inverse with Mathematica (Wolfram Research Inc., 2005), and � � 
then by substituting s2 det(A) by det Ã into equation (3.3), we found c0ΣBc, 

which is � �� � � �2 
2(2r+1)σ2 12σ2 6σ2 

σ2 
0 + σ2 

1 + − σ01 −2+3r+2 (r 23+3r2+2r)s� (r2+3r+2)sr � . 
w(1 − pe)pe σ1

2 + 12σ2 

(r3+3r 22+2r)s
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The limit of this expression is 
σ2σ2 − σ2 

0 1 01 . 
pe(1 − pe)σ1

2 

The same result is obtained when τ is fixed. This limit can be rewritten as 

σ2 ρt0 (1 − ρ2 
t0 01)lim c 0ΣBc = . 

r→∞ pe(1 − pe) 

When V (t0) > 0 and the covariance follows RS, the full distribution of (k, t) is 

needed and numerical integration needs to be performed (Appendix A.8). Thus, 

general results about the limit of c0ΣBc as r →∞ cannot be obtained. 

A.6.6 LDD, RS and V (t0) = 0 

When V (t0) = 0, using equation (3.4), we can derive c0ΣBc by substituting � � 
s2 det(A) by det Ã to obtain, in terms of our parameterization, � �� � � � 

12σ2(1 − ρt0 ) 1 ρb1,s,r̃ 1 
c 0ΣBc = + , 

s2pe(1 − pe) r(r + 1)(r + 2) 1 − ρb1,s,r̃ r̃(r̃ + 1)(r̃ + 2) 

as in Table 1. Then, � �� � 
12σ2(1 − ρt0 ) ρb1,s,r̃ 1 

lim c 0ΣBc = , 
r→∞ s2pe(1 − pe) 1 − ρb1,s,r̃ r̃(r̃ + 1)(r̃ + 2)

and, equivalently when τ is fixed, the limit is � �� � 
12σ2(1 − ρt0 ) ρb1,τ,r̃ r̃

. 
τ 2pe(1 − pe) 1 − ρb1,τ,r̃ (r̃ + 1)(r̃ + 2) 

When V (t0) > 0 and the covariance follows RS, the full distribution of (k, t) is 

needed and numerical integration needs to be performed (Appendix A.8). Thus, 

general results about the limit of c0ΣBc as r →∞ cannot be obtained. 
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A.7 The effect of covariance parameters on the mini-
mum r for a fixed N , subject to power π 

A.7.1 The effect of ρ and ρt0 

A.7.1.1 CMD, CS, V (t0) = 0 

From equation (3.6), � �2 
β2

2N pe(1 − pe) − zπ + z1−α/2 σ2 

r = � �2 . 
zπ + z1−α/2 σ2ρ − β2

2N pe(1 − pe) 

Differentiating with respect to ρ, we get � �� �2 � �2 

∂r zπ + z1−α/2 σ2 −β2
2N pe(1 − pe) + zπ + z1−α/2 σ2 

= .�� �2∂ρ �2 
zπ + z1−α/2 σ2ρ − β2

2N pe(1 − pe) � �2If zπ + z1−α/2 σ2 > β2
2N pe(1 − pe), then ∂r > 0, so r increases as ρ increases. If � �2 

∂ρ 

zπ + z1−α/2 σ2 < β2
2N pe(1 − pe), then ∂r < 0, so r decreases as ρ increases. 

∂ρ 

A.7.1.2 LDD, CS, fixed s, V (t0) = 0 

The minimum r for fixed N and fixed power, π, solves � �2 
12σ2(1 − ρ) zπ + z1−α/2 

N = ,
γ3

2pe(1 − pe) s2 r (r + 1)(r + 2)

which was obtained plugging in the corresponding value of c0ΣBc in Table 1 into 

equation (3.5). Defining 

Nγ3
2pe(1 − pe) s2 (1 − ρ)

F (r, ρ) = � �2 − , 
12σ2 zπ + z1−α/2 

r (r + 1)(r + 2)

the equation F (r, ρ) = 0 implicitly defines the function r = f(ρ). Using implicit 

differentiation and taking into account that r is a function of ρ, r(ρ), we obtain 

∂r −r (r + 1) (r + 2) 
= . 

∂ρ (1 − ρ)(3r2 + 6r + 2) 

Since r is positive, the derivative is always negative, and r decreases as ρ increases. 
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A.7.1.3 LDD, CS, fixed τ , V (t0) = 0 

The minimum r for fixed N and fixed power, π, solves � �2 
12σ2(1 − ρ) zπ + z1−α/2 r 

N = ,
γ3

2pe(1 − pe) τ 2 (r + 1)(r + 2)

which was obtained plugging in the corresponding value of c0ΣBc in Table 1 into 

equation (3.5). Defining 

Nγ3
2pe(1 − pe) τ 2 (1 − ρ)r 

F (r, ρ) = � �2 − , 
12σ2 zπ + z1−α/2 

(r + 1)(r + 2)

the equation F (r, ρ) = 0 implicitly defines the function r = f(ρ). Using implicit 

differentiation and taking into account that r is a function of ρ, we obtain 

∂r r (r + 1) (r + 2) 
= . 

∂ρ (1 − ρ) (−r2 + 2) 

If r > 2, then ∂r < 0. So if we are taking at least two post-baseline measures, 
∂ρ 

larger values of ρ lead to smaller values of r to achieve the specified power. Since 
r is the same for r = 1 and r = 2, it is preferable to choose r = 1 since fewer 

(r+1)(r+2) 

measurements need to be collected. Therefore, the choice between r = 1 and r = 2 

is not affected by ρ. 

A.7.1.4 LDD, RS, fixed s, V (t0) = 0 

The minimum r for fixed N and fixed power, π, solves � �� � � �� �2 )12σ2(1−ρt0 1 ρb1,s,r̃ 1 zπ + z1−α/2 s2 r(r+1)(r+2) + 
1−ρb1,s,r̃ r̃(r̃+1)(r̃+2)

N = ,
γ3

2pe(1 − pe) 

which was obtained by plugging in the corresponding value of c0ΣBc in Table 1 

into equation (3.5). Defining 

F (r, ρt0 ) = � � � �
2Nγ3

2pe(1 − pe)s 1 ρb1,s,r̃ 1 � �2 − (1 − ρt0 ) + , 
12σ2 zπ + z1−α/2 

r(r + 1)(r + 2) 1 − ρb1,s,r̃ r̃(r̃ + 1)(r̃ + 2) 
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the equation F (r, ρt0 ) = 0 implicitly defines the function r = f(ρt0 ). Using implicit 

differentiation and taking into account that r depends on ρt0 , we obtain 

∂r −r (r + 1) (r + 2) [ρb1,s,r̃r (r + 1) (r + 2) + (1 − ρb1,s,r̃) r̃(r̃ + 1)(r̃ + 2)] 
= < 0. 

∂ρt0 (1 − ρb1,s,r̃) r̃(r̃ + 1)(r̃ + 2)(1 − ρt0 ) (3r2 + 6r + 2) 

Since the derivative is always negative when r > 0, r decreases as ρt0 increases. 

A.7.1.5 LDD, RS, fixed τ , V (t0) = 0 

The minimum r for fixed N and fixed power, π, solves � �� � � �� �2 12σ2(1−ρt0 ) ρb1,τ,r̃r r̃zπ + z1−α/2 τ2 (r+1)(r+2) + 
1−ρb1,τ,r̃ (r̃+1)(r̃+2)

N = ,
γ3

2pe(1 − pe) 

which was obtained by plugging in the corresponding value of c0ΣBc in Table 1 

into equation (3.5). Defining 

F (r, ρ) = � � � � 
Nγ3

2pe(1 − pe)τ 2 r ρb1,τ,r̃ r̃� �2 − (1 − ρt0 ) + , 
12σ2 zπ + z1−α/2 

(r + 1)(r + 2) 1 − ρb1,τ,r̃ (r̃ + 1)(r̃ + 2) 

the equation F (r, ρt0 ) = 0 implicitly defines the function r = f(ρt0 ). Using implicit 

differentiation, and taking into account that r depends on ρt0 , we obtain 

∂r (r + 1) (r + 2) [ρb1,τ,r̃r̃ (r + 1) (r + 2) + (1 − ρb1,τ,r̃) (r̃ + 1)(r̃ + 2)r] 
= . 

∂ρt0 (1 − ρb1,τ,r̃) (r̃ + 1)(r̃ + 2) (1 − ρt0 ) (2 − r2) 

If r > 2 then 
∂ρ
∂r 

t0 
< 0. So if we are taking at least two post-baseline measures, larger 

values of ρt0 lead to smaller minimal values of r to achieve a certain power. Since 
r is the same for r = 1 and r = 2, the resulting power of both studies would 

(r+1)(r+2) 

be the same and it would be preferable to choose r = 1 since less measurements 

need to be collected. The choice between r = 1 and r = 2 is not affected by ρt0 . 
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A.7.2 The effect of ρb1,s,r̃

A.7.2.1 LDD, RS, fixed s, V (t0) = 0 

The minimum r for fixed N and fixed power, π, solves � �� � � �� �2 12σ2(1−ρt0 ) 1 ρb1,s,r̃ 1 zπ + z1−α/2 s2 r(r+1)(r+2) + 
1−ρb1,s,r̃ r̃(r̃+1)(r̃+2)

N = ,
γ3

2pe(1 − pe) 

which was obtained plugging in the corresponding value of c0ΣBc in Table 1 into 

equation (3.5). Defining 

F (r, ρb1,s,r̃) = � � � �
2Nγ3

2pe(1 − pe)s 1 ρb1,s,r̃ 1 � �2 − + , 
12σ2 zπ + z1−α/2 (1 − ρt0 ) r(r + 1)(r + 2) 1 − ρb1,s,r̃ r̃(r̃ + 1)(r̃ + 2) 

the equation F (r, ρb1,s,r̃) = 0 implicitly defines the function r = f(ρb1,s,r̃). Using 

implicit differentiation, and taking into account that r depends on ρb1,s,r̃, we obtain 

∂r r2(r + 1)2(r + 2)2 

= > 0. 
∂ρb1,s,r̃ r̃(r̃ + 1)(r̃ + 2)(1 − ρb1,s,r̃)2(3r2 + 6r + 2) 

Since the derivative is always positive, r increases as ρb1,s,r̃ increases. 

A.7.2.2 LDD, RS, fixed τ , V (t0) = 0 

The minimum r for fixed N and fixed power, π, solves � �� � � �� �2 12σ2(1−ρt0 ) r ρb1,τ,r̃ r̃zπ + z1−α/2 τ2 (r+1)(r+2) + 
1−ρb1,τ,r̃ (r̃+1)(r̃+2)

N = ,
γ3

2pe(1 − pe) 

which was obtained plugging in the corresponding value of c0ΣBc in Table 1 into 

equation (3.5). Defining 

F (r, ρb1,τ,˜) = r � � � � 
Nγ3

2pe(1 − pe)τ
2 r ρb1,τ,r̃ r̃� �2 − + , 

12σ2 zπ + z1−α/2 (1 − ρt0 ) (r + 1)(r + 2) 1 − ρb1,τ,r̃ (r̃ + 1)(r̃ + 2) 
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the equation F (r, ρb1,s,r̃) = 0 implicitly defines the function r = f(ρb1,s,r̃). Using 

implicit differentiation, and taking into account that r depends on ρb1,τ,r̃, we obtain 

∂ r̃(r + 1)2(r + 2)2 

= . 
∂ρb1,τ,r̃ (r2 − 2)(r̃ + 1)(r̃ + 2)(1 − ρb1,τ,r̃)2 

If r > 2, ∂r > 0. So if we are taking at least two post-baseline measurements, 
∂ρb1,τ,r̃

the effect of increasing ρb1,τ,r̃ is to increase the minimum r needed to achieve a 
rpre-specified power. Since is the same for r = 1 and r = 2, the resulting 

(r+1)(r+2) 

power of both studies would be the same and it is therefore preferable to choose 

r = 1 since less measurements need to be collected. The choice between r = 1 and 

r = 2 is not affected by ρb1,τ,r̃. 

A.8 Calculation of ΣB under RS and V (t0) > 0 

We need to derive � � ��−1 
= E X0 iΣ

−1 .ΣB i Xi � � 
When Σi = Σ for all subjects, E X0 iΣ

−
i 

1Xi can be computed exactly. Under RS, 

Σi = Σ when V (t0) = 0, in which case equations (3.3) and (3.4) with V (t0) = 0 pro-

vide expressions for c0ΣBc for CMD and LDD, respectively. However, if V (t0) > 0, 

then Σi 6= Σ under RS. Specifically, Σi depends on t0i, so we have Σ(t0i). The for-

mula for Σi under RS is Σi = ZiDZ
0 

wI, where i + σ2 � � 
1 · · · · · · · · · 1 

Z0 i = 
t0i · · · t0i + js · · · t0i + rs 

and � � 
σ2 

0 σ01D = . 
σ2σ01 1 
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� 
� 

Under LDD, ⎛ ⎜⎜⎜⎜⎜⎜⎝ 

⎞ ⎟⎟⎟⎟⎟⎟⎠ 

1 t0i 
... 

... 

...

... 

t0i + js 
... 

�� 
1 0 ki 0 
0 1 0 ki 

ZiWi = = 

1 t0i + rs ⎛ ⎜⎜⎜⎜⎜⎜⎝ 

⎞ ⎟⎟⎟⎟⎟⎟⎠ = Xi, 

1 t0i ki t0iki 
... 

... 
... 

... 

... t0i + js 
... (t0i + js) ki 

... 
... 

... 
... 
1 t0i + rs ki (t0i + rs) ki 

where �� 
1 0 ki 0 

Wi = . 
0 1 0 ki 

Therefore, 

�−1 
I ZiWi.X0 Σ−1 = W0Z0 Σ−1 = W0Z0 i i Xi i i i ZiWi i i ZiDZ

0 
i + σw

2 

In Appendix A.6.5, we showed that � �−1�−1 −1 
σ2 

wZ0 ZDZ0 (Z0Z)+ σw
2 I Z = + D , 

Σ−1 = W0 (Z0Z)so X0 i i Xi i 
−1 �−1 

σ2 
w Wi. Now, + D ! 

sr(r+1)r + 1 (r + 1) t0i + 
2(Z0 iZi) = ,sr(r+1) 2r(r+1)(2r+1)(r + 1) t0i + 

2 (r + 1) t20i + st0ir(r + 1) + s
6 �� 

−1 2 (r (1 + 2r) s2 + 6rst0i + 6t20i) −3 (rs + 2t0i)(Z0 iZi) = 
r(r + 1)(r + 2)s2 −3 (rs + 2t0i) 6 

and �� 
a(t0i) c(t0i)

� �−1 
(Z0Z)

−1 
σw 

2 + D = , 
c(t0i) d(t0i) 

where �� 
12σ2 

w 
2 + σ1

2 
r(r+1)(r+2)s�� �a(t0i) = � � ,�22σ2 (r(1+2r)s2+6rst0i+6t2 

w 0i)12σ2 
w 

r(r+1)(r+2)s2 + σ2 σ2 
1 0 + 6σ2 (rs+2t0i)w

r(r+1)(r+2)s
− σ01 −2r(r+1)(r+2)s
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2 

�� 
6σ2 (rs+2t0i)w−σ01 + 2r(r+1)(r+2)s�� �c(t0i) = � � ,�2 

+ σ2 σ2 
1 0 + 

2σ2 (r(1+2r)s2+6rst0i+6t2 
w 0i) 

r(r+1)(r+2)s2 − σ01 −12σ2 
w 6σ2 (rs+2t0iw

r(r+1)(r+2)s2r(r+1)(r+2)s

and �� 
2σ2 (r(1+2r)s2+6rst0i+6t2 

w 0i)σ2 
0 + 2r(r+1)(r+2)s�� � 

− 
d(t0i) = � .� �22σ2 (r(1+2r)s2+6rst0i+6t2 

w 0i)12σ2 
w 6σ2 (rs+2t0iw+ σ2 σ2 

1 0 + σ01 −2 2 r(r+1)(r+2)s2r(r+1)(r+2)s r(r+1)(r+2)s

Pre- and post-multiplying by Wi, we obtain 

� 
X0 Σ−1 = W0 (Z0Z)i i Xi i 

�−1−1 
σ2 

w + D Wi = ⎛ ⎜⎜⎝ 
⎞ ⎟⎟⎠

a(t0i) c(t0i) kia(t0i) kic(t0i) 
c(t0i) d(t0i) kic(t0i) kid(t0i) 

kia(t0i) kic(t0i) kia(t0i) kic(t0i) 
kic(t0i) kid(t0i) kic(t0i) kid(t0i) 

, 

since ki 
2 = ki. To compute 

�� 
X0 Σ−1E i i Xi = 

⎛ ⎜⎜⎝ 
E [a(t0i)] E [c(t0i)] E [kia(t0i)] E [kic(t0i)] 
E [c(t0i)] E [d(t0i)] E [kic(t0i)] E [kid(t0i)] 

E [kia(t0i)] E [kic(t0i)] E [kia(t0i)] E [kic(t0i)] 
E [kic(t0i)] E [kid(t0i)] E [kic(t0i)] E [kid(t0i)] 

⎞ ⎟⎟⎠ , 

the distribution of t0i and the joint distribution of (t0i, ki) are needed. Assuming 

that ki follows a Bernoulli distribution with probability of success pe, we have Z 
E [a(t0i)] = a(t0i)f(t0i)dt0i ZZ 

= (1 − pe) a(t0i)f(t0i|ki = 0)dt0i + pe a(t0i)f(t0i|ki = 1)dt0i 

and Z Z 
E [kia(t0i)] = kia(t0i)f(t0i, ki)dkidt0i ZZX 

= kia(t0i)f(t0i, ki)dt0i = a(t0i)f(t0i, 1)dt0i, 
ki=0,1 

and equivalently we can deduce expressions for E [c(t0i)], E [d(t0i)], E [kic(t0i)] and 

E [kid(t0i)]. Then, it can be derived that the [4,4]th component of the inverse of 
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� � 
E X0 iΣi 

−1Xi is R 
(1 − pe)

−1 a(t0i)f(t0i|ki = 0)dt0ih�R � �R � �R �2 
i 

a(t0i)f(t0i|ki = 0)dt0i d(t0i)f(t0i|ki = 0)dt0i − c(t0i)f(t0i|ki = 0)dt0i R 
p−1 a(t0i)f(t0i|ki = 1)dt0i 

+h�R � �R e � �R �2 
i . 

a(t0i)f(t0i|ki = 1)dt0i d(t0i)f(t0i|ki = 1)dt0i − c(t0i)f(t0i|ki = 1)dt0i 

(A.4) 

In the paper and in our software, we assumed that t0i is normally distributed. We 

assumed that t0i has mean zero, which can always be achieved by centering at the 

mean initial time and implies no loss of generality (Kreft et al., 1995), and that it has 

variance V (t0). Additionally, we assumed that the variance of t0i is the same within 

each exposure group. In Appendix A.1.2 we derived the means of t0i conditional 

on exposure as s p(1 − pe)E (t0|k = 1) = ρe,t0 V (t0) 
pe 

and r ppeE (t0|k = 0) = −ρe,t0 V (t0). 
(1 − pe)

Using results from Appendix A.1.2, we find that � � 
V (t0|k = 1) = E t2|k = 1 − [E (t0|k = 1)]2 

0� � 
V (t0) pe + ρ2

e,t0 
(1 − 2pe) (1 − pe) � � 

= − ρ2 V (t0) = V (t0) 1 − ρ2 .e,t0 e,t0pe pe 

Therefore, 

f(t0i|ki = 1) = ⎡ s ⎤!2p1 −1 (1 − pe)⎣ ⎦q � � exp � � t0i − ρe,t0 V (t0)
1 − ρ2 

2πV (t0) 1 − ρe
2 
,t0 

2V (t0) e,t0 
pe 

and 

f(t0i|ki = 0) = " #� r �2p1 −1 pe q � exp � � t0i + ρe,t0 V (t0) .� 
1 − ρ2 2V (t0) 1 − ρe

2 
,t0 

(1 − pe)2πV (t0) e,t0 
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Our program uses these distributions to compute (A.4) numerically. For CMD, the 

procedure is exactly the same but using the matrix � � 
1 0 kiWi = . 
0 1 0 

A.9 Proof that ropt is the same for both the cost con-
straint and the power constraint, and reduces to 
the solution to the unconstrained problem (4.2), 
but Nopt depends upon the constraint 

The power optimization problem is "√ � � # 
N �(c0B) � Nrc1

Max Φ p HA − z1−α/2 subject to COST = Nc1 + . 
r c0ΣB(r)c κ 

The cost constraint, 
κCOST 

N = , 
c1(κ + r)

can be plugged in the optimization function to obtain the unconstrained problem ⎡q � � ⎤ 
κCOST 0B) ��(c
c1(κ+r) HA ⎦Max Φ ⎣ p − z1−α/2 . 

r c0ΣB(r)c 

Since Φ is a monotone function, this is equivalent to q � � 
κCOST ��(c0B)
c1(κ+r) HA 

Max p − z1−α/2. 
r c0ΣB(r)c 

Removing positive constant terms with respect to r, it is equivalent to 

1 
Max , 

r (κ + r)c0ΣB(r)c 

which is in turn equivalent to Min (κ + r)c0ΣB(r)c. Once ropt is found solving this 
r 

minimization problem, Nopt would be 

κ COST 
Nopt = . 

c1 (κ + ropt) 
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The cost optimization problem is "√ � � # �(c �Nrc1 N 0B)HAMin Nc1 + subject to Φ p − z1−α/2 = π. 
r κ 0ΣB(r)cc

Noting that � � 
Nrc1 κ + r 

Nc1 + = Nc1
κ κ 

and that from the power constraint � �2 
(c0 ΣB(r) c) z1−α/2 + zπ 

N = � �2 , 
(c0B)HA 

this is equivalent to the unconstrained problem � �2 � � 
(c0 ΣB(r) c) z1−α/2 + zπ κ + r 

Min � .�2 c1 
r (c0B)HA 

κ 

Removing positive constant terms with respect to r, the problem becomes 

Min (κ + r) (c0 ΣB(r) c), which is equivalent to the minimization problem ob-
r 

tained before. Thus, given κ, c and ΣB(r), the same ropt maximizes power and 

minimizes cost. For the cost problem, once ropt is found solving the minimization 

problem, � �2 
(c0ΣB(ropt)c) zπ + z1−α/2 

Nopt = . 
(c0BHA )

2 

A.10 Derivation of (Nopt, ropt) 

A.10.1 (Nopt, ropt) under LDD and fixed s, for CS 

The optimal r solves Min (κ+r)c0ΣBc (Appendix A.9). Plugging in the appropriate 
r 

value for c0ΣBc from Table 1, the problem under LDD, CS and fixed s is 

12σ2(1 − ρ)
Min (κ + r) . 

r pe(1 − pe)s2r(r + 1)(r + 2) 

Removing positive constant terms with respect to r, this problem becomes 

(κ + r)
Min F (r) = . 

r r (r + 1)(r + 2) 
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Since 
∂F −2κ − 6κr − 3r2 − 3κr2 − 2r3 

= < 0 ∀κ,
∂r r2(r + 1)2(r + 2)2 

F (r) decreases as r increases, and ropt →∞ subject to the cost constraint. 

A.10.2 (Nopt, ropt) under LDD, RS and fixed s 

The optimal r solves Min (κ+r)c0ΣBc (Appendix A.9). Plugging in the appropriate 
r 

value for c0ΣBc from Table 1, the problem under LDD, RS and fixed s is � �� � � � 
12σ2(1 − ρt0 ) 1 ρb1,s,r̃ 1 

Min (κ + r) + . 
r s2pe(1 − pe) r(r + 1)(r + 2) 1 − ρb1,s,r̃ r̃(r̃ + 1)(r̃ + 2) 

Removing positive constant terms with respect to r, this problem becomes � � � � 
1 ρb1,s,r̃ 1 

Min G(r) = (κ + r) + . 
r r(r + 1)(r + 2) 1 − ρb1,s,r̃ r̃(r̃ + 1)(r̃ + 2) 

The solution, ropt, solves � � 
∂G ρb1,s,r̃ 1 −2κ − 6κr − 3r2 − 3κr2 − 2r3 

= + 
∂r 1 − ρb1,s,r̃ r̃(r̃ + 1)(r̃ + 2) r2(r + 1)2(r + 2)2 � � 

ρb1,s,r̃ 1 ∂F 
= + = 0,

1 − ρb1,s,r̃ r̃(r̃ + 1)(r̃ + 2) ∂r 

where ∂F is the derivative of the objective function F (r) for the analogous problem 
∂r 

under compound symmetry (Appendix A.10.1). We showed in Appendix A.10.1 

that ∂F is always negative, and since 
∂r 

∂2F 2 (4κ + 18κr + 33κr2 + 7r3 + 24κr3 + 9r4 + 6κr4 + 3r5) 
= 3 > 0,

∂r2 r3 (r + 1) (r + 2)3 

∂F is ∂F ∂F is also an increasing function of r. In addition, lim = 0−. Since ∂G plus
∂r ∂r ∂r ∂r r→∞ 

a constant, ∂G will equal 0 at some interior point of r between 1 and ∞. Since 
∂r 

∂2G 2 (4κ + 18κr + 33κr2 + 7r3 + 24κr3 + 9r4 + 6κr4 + 3r5) 
= > 0 

∂r2 r3 (r + 1)3 (r + 2)3 

for all r > 0, G(r) is convex and the point that solves ∂G = 0 is a global minimum 
∂r 

and therefore it is ropt. Now, � � 
2 ρb1,s,r̃ropt −(3 + 2ropt)r̃(r̃ + 1)(r̃ + 2) + (ropt + 1)2(ropt + 2)2 

∂G 1−ρb1,s,r̃
= 0 ⇔ κ = � � . 

∂r 2 + 6ropt + 3r2 r̃(r̃ + 1)(r̃ + 2) opt 

Figure 8 of the paper shows ropt for several values of κ and ρb1,s,r̃. 
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A.10.3 (Nopt, ropt) under LDD, CS and fixed τ 

As shown in Appendix A.9, the optimal r solves Min (κ+r)c0ΣBc. Plugging in the 
r 

appropriate value for c0ΣBc from Table 1, the problem under LDD, CS and fixed τ 

is 
12σ2(1 − ρ)r 

Min (κ + r) . 
r pe(1 − pe)τ 2(r + 1)(r + 2) 

Removing positive constant terms with respect to r, this problem becomes 

(κ + r) r 
Min H(r) = . 

r (r + 1)(r + 2) 

Taking derivatives with respect to r, ropt solves 

∂H (3 − κ)r2 + 4r + 2κ 
= = 0. 

∂r (r + 1)2 (r + 2)2 

For κ < 3 the derivative is positive. Therefore, when κ < 3, H(r) increases with r 

and, consequently, the minimum is at r = 1. If κ > 3, the derivative equals 0 at 
√ √ 

2 ± 2 2 − 3κ + κ2 

r = ,
κ − 3 

which gives a positive solution only at 
√ √ 

2 + 2 2 − 3κ + κ2 

r = . 
κ − 3 

Now, we need to check whether at this point there is a maximum or a minimum of 

H(r). The second derivative of H(r) is 

∂2H 2 (4 − 6κ − 6κr − 6r2 − 3r3 + κr3) 
= . 

∂r2 (r + 1)3(r + 2)3 

We evaluated the second derivative at the point 
√ √ 

2 + 2 2 − 3κ + κ2 

r = 
κ − 3 

with Mathematica (Wolfram Research Inc., 2005) and obtained 

24 + p
(κ 

√ 
3 2 

− 2)(κ − 

! 
√ p

κ − 17 2 (κ − 2)(κ − 1) − p
1) (κ 

√ 
7 2 

− 2)(κ − 
− 40. 

1) 
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This expression can be proven to be negative for all κ > 3. Therefore, H(r) has a 

maximum at √ √ 
2 + 2 2 − 3κ + κ2 

r = ,
κ − 3 

while we were looking for a minimum. Since this is the only local maximum or 

minimum of H(r), and H(r) is continuous, the global minimum of H(r) will be at 

r = 1 or at r = ∞. The global minimum will be at r = ∞ if we can find a value of 

r such that 
(1 + κ)

H(r) < H(1) = . 
6 

With a little bit of algebra , we get 

r(r + κ) (1 + κ)
H(r) = < ⇔ r 2(κ − 5) + r(−3κ + 3) + 2(κ + 1) > 0,

(r + 1)(r + 2) 6 
2(κ+1) 2(κ+1)which has roots at r = 1 and r = . If κ < 5, then r = < 0, outside of its 

κ−5 κ−5 

valid range. The global minimum is then ropt = 1, 

κCOST 
Nopt = 

c1(κ + 1) 

or � �2 
2σ2(1 − ρ) zπ + z1−α/2 

Nopt = 
τ 2pe(1 − pe)γ3

2 

for the power maximization or cost minimization problems, respectively. If κ > 5 

then r2(κ − 5) + r(−3κ + 3) + 2(κ + 1) is a convex function and is greater than 0 for 
2(κ+1)r > 

κ−5 . Thus, the global minima will be at r = ∞. In practice, when κ > 5, we 
2(κ+1)will choose r as large as possible provided r > 

κ−5 and then find Nopt to satisfy 

the cost or power constraint. If there is no feasible value of r greater than 2(κ+1) 
κ−5 

then one will choose r = 1. 

A.10.4 (Nopt, ropt) under LDD, RS and fixed τ 

The optimal r solves Min (κ+r)c0ΣBc (Appendix A.9). Plugging in the appropriate 
r 

value for c0ΣBc from Table1, the problem under LDD, RS and fixed τ is � �� � � � 
12σ2(1 − ρt0 ) r ρb1,τ,r̃ r̃

Min (κ + r) + . 
r s2pe(1 − pe) (r + 1)(r + 2) 1 − ρb1,τ,r̃ (r̃ + 1)(r̃ + 2) 
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Removing positive constant terms with respect to r, this problem becomes � � � � 
r ρb1,τ,r̃ r̃

Min I(r) = (κ + r) + . 
r (r + 1)(r + 2) 1 − ρb1,τ,r̃ (r̃ + 1)(r̃ + 2) 

Taking derivatives with respect to r, ropt solves � � 
∂I ρb1,τ,r̃ r̃ (3 − κ)r2 + 4r + 2κ 

= + = 
∂r 1 − ρb1,τ,r̃ (r̃ + 1)(r̃ + 2) (r + 1)2 (r + 2)2 � � 

ρb1,τ,r̃ r̃ ∂H 
+ = 0,

1 − ρb1,τ,r̃ (r̃ + 1)(r̃ + 2) ∂r 

where ∂H is the derivative of the objective function H(r) for the analogous problem 
∂r 

∂H under CS, given in Appendix A.10.3. There we showed that if κ < 3 then 
∂r was 

strictly positive for all r, and therefore so is ∂I . Thus, if κ < 3, I(r) is minimized at 
∂r 

ropt = 1. For κ > 3, we know that ∂H is continuous, has only one root in the range 
∂r 

∂H 0− and ∂H(1) 7+κof interest and it can be shown that lim = = . It can also be 
∂r ∂r 36r→∞ 

shown with Mathematica (Wolfram Research Inc., 2005) that ∂
2H has only one real 

∂r2 

root, r∗. Therefore, ∂H is positive at r = 1, it crosses 0 at the root 
∂r 

√ √ 
2 + 2 2 − 3κ + κ2 

r = ,
κ − 3 

as shown in Appendix A.10.3, it has a minimum at the only root of ∂2H and it 
∂r2 

increases again towards zero, where it reaches an asymptote. Because of the form 

of ∂I 
∂r , it will have a similar shape, since it is equal to ∂H but moved upwards by a 

∂r 

factor of � � 
ρb1,τ,r̃ r̃

. 
1 − ρb1,τ,r̃ (r̃ + 1)(r̃ + 2) 

Therefore, ∂I will have zero roots if 
∂r � � 

ρb1,τ,r̃ r̃ ∂H(r∗)
> ,

1 − ρb1,τ,r̃ (r̃ + 1)(r̃ + 2) ∂r 

or two roots otherwise. In the first case, when ∂I has zero roots, ∂I is always 
∂r ∂r 

positive and therefore I(r) increases as r increases and the minimum of I(r) is at 

ropt = 1. In the second case, ∂I has two roots, which solve 
∂r � � 

2 ρb1,τ,r̃r(4 + 3r)(r̃ + 1)(r̃ + 2) + r̃ (r + 1) (r + 2)2 
1−ρb1,τ,r̃

κ = . 
(r2 − 2)(r̃ + 1)(r̃ + 2) 
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∂2H ∂2I ∂2HAlso, = , and ∂2H is continuous and it has only one root at r∗. is
∂r2 ∂r2 ∂r2 ∂r2 

negative for r < r∗ and positive for r > r∗. Since r∗ lies between the first and 
∂I second roots of 
∂r , it can be concluded that the first root is a maximum of I(r) and 

the second root is a minimum of I(r). The function I(r) has, therefore, two local 

minima, one at r = 1 and the other at the second root of ∂I . To find out when the 
∂r 

second root is the global minimum of I(r) we need to solve I(1) > I(r), where � � � � 
1 ρb1,τ,r̃ r̃

I(1) = (κ + 1) + 
6 1 − ρb1,τ,r̃ (r̃ + 1)(r̃ + 2) 

and � � � � 
r ρb1,τ,r̃ r̃

I(r) = (κ + r) + . 
(r + 1)(r + 2) 1 − ρb1,τ,r̃ (r̃ + 1)(r̃ + 2) 

Provided r > 2, this is equivalent to 

[−2(κ + 1) + (κ − 5)r] (r̃ + 1)(r̃ + 2) 
ρb1,τ,r̃ < . 

6r̃(r + 1)(r + 2) + [−2(κ + 1) + (κ − 5)r] (r̃ + 1)(r̃ + 2) 

The condition only makes sense if −2(κ + 1) + (κ − 5)r > 0, which is equivalent to 
2(κ−1)the conditions κ > 5 and r > 

κ−5 . Figure 13 of the paper shows this region for 

different values of κand ρb1,τ,r̃, together with a line for the optimal value. 

A.11 Demonstration of the use of program optitxs 

This is the input and output from the program optitxs for the calculation 

of the optimal combination of (N, r) that minimizes the total cost of the study 

subject to achieving a fixed power under LDD and RS. It is motivated by data 

from the study examined in section 5. For other examples and a detailed user’s 

guide with many illustrative examples, go to http://www.hsph.harvard. 

edu/faculty/spiegelman/optitxs.html. 

> long.opt() 

* By just pressing <Enter> after each question, the default value, 
shown between square brackets, will be entered. 
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* Press <Esc> to quit 

Do you want to maximize power subject to a given cost (1) or to 
minimize the total cost subject to a given power (2)[1]? 2 

Enter the desired power (0<Pi<1) [0.8]: .8 

Are you assuming the time between measurements (s) is fixed (1), 
or the total duration of follow-up (tau) is fixed (2) [1]? 2 

Enter the time of follow-up (tau) [1]: 18 

Enter the exposure prevalence (pe) (0<=pe<=1) [0.5]: .79 

Enter the variance of the time variable at baseline, V(t0) 
(enter 0 if all participants begin at the same time) [0]: 100 

Enter the correlation between the time variable at baseline and 
exposure, rho_{e,t0} [0]: 0 

Constant mean difference (1) or Linearly divergent difference (2) 
[1]: 2 

Will you specify the alternative hypothesis on the absolute 
(beta coefficient) scale (1) or the relative (percent) scale (2) 
[1]? 2 

Enter mean response at baseline among unexposed (mu00) [10]: 3.5 

Enter the percent change from baseline to end of follow-up among 
unexposed (p2) (e.g. enter 0.10 for a 10% change) [0.1]: -.182 

Enter the percent difference between the change from baseline to 
end of follow-up in the exposed group and the unexposed group 
(p3) (e.g. enter 0.10 for a 10% difference) [0.1]: .1 

Which covariance matrix are you assuming: compound symmetry (1), 
damped exponential (2) or random slopes (3) [1]? 3 

Enter (1) for standard notation (variance of residuals and random 
effects) or (2) for "reliability" notation [1]: 2 

Enter the variance of the response given the assumed model 
covariates at baseline (sigma2) [1]: .34 
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Enter the reliability coefficient at baseline (0<rho_t0<1) 
[0.8]: .877 

Enter the trial value of the number of measurements at which the 
slope reliability will be provided (\tilde r>0 ) [5]: 6 

Enter the slope reliability for 6 repeated measurements 
(0<rho_{b1,s,\tilde r}<1 or 0<rho_{b1,tau,\tilde r}<1) 
[0.1]: .364 

Enter the correlation between the random effects of slope 
and intercept (-1<rho[b0,b1]<1) [0]: -.32 

Enter the cost of the first observation of each subject (c1>0) 
[80]: 80 

Enter the ratio of costs between the first measure and the rest 
(kappa) [2]: 20 

Cost optimization problem (min cost for a given power): 
Optimal r= 12 , Optimal N= 732 , Power= 0.8 ,Cost= 93696 

Slope reliability at r= 12 : 0.4818737 
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