WEBVTT

- 1 00:00:00.000 --> 00:00:00.990 <v Instructor>Good afternoon.</v>
- 2 00:00:00.990 --> 00:00:04.440 In respect for everybody's time today,
- $3\ 00:00:04.440 \longrightarrow 00:00:06.570$ let's go ahead and get started.
- 4 00:00:06.570 --> 00:00:09.300 So today, it is my pleasure to introduce
- $5~00:00:09.300 \longrightarrow 00:00:11.550~Dr$. Alexander Strang.
- $6~00:00:11.550 --> 00:00:15.990~\mathrm{Dr.}$ Strang earned his bachelor's in mathematics, in physics,
- 7 00:00:15.990 --> 00:00:18.840 as well as his PhD in applied mathematics
- 8~00:00:18.840 --> 00:00:22.143 from Case Western Reserve University in Cleveland, Ohio.
- 9 00:00:23.820 --> 00:00:26.610 Born in Ohio, so representing.
- $10\ 00:00:26.610 \longrightarrow 00:00:28.950$ He studies variational inference problems,
- 11 00:00:28.950 --> 00:00:31.740 noise propagation in biological networks,
- 12 00:00:31.740 --> 00:00:33.810 self organizing edge flows,
- $13\ 00:00:33.810 \longrightarrow 00:00:35.730$ and functional form game theory
- 14 00:00:35.730 --> 00:00:37.710 at the University of Chicago,
- $15~00{:}00{:}37.710 \dashrightarrow 00{:}00{:}40.290$ where he is a William H. Kruskal Instructor
- $16\ 00:00:40.290 \longrightarrow 00:00:43.470$ of physics and applied mathematics.
- $17\ 00:00:43.470 \dashrightarrow 00:00:46.680$ Today, he's going to talk to us about motivic expansion
- $18\ 00:00:46.680 \longrightarrow 00:00:50.100$ of global information flow in spike train data.
- $19\ 00:00:50.100 \longrightarrow 00:00:51.400$ Let's welcome our speaker.
- $20\ 00:00:54.360 \longrightarrow 00:00:55.980 < v \rightarrow Okay$, thank you very much. </v>
- 21 00:00:55.980 --> 00:00:58.650 Thank you, first, for the kind invite,
- $22~00{:}00{:}58.650 \dashrightarrow 00{:}01{:}01.350$ and for the opportunity to speak here in your seminar.
- $23\ 00:01:03.090$ --> 00:01:06.330 So, I'd like to start with some acknowledgements.
- $24\ 00:01:06.330 \longrightarrow 00:01:08.730$ This is very much work in progress.
- $25~00:01:08.730 \longrightarrow 00:01:10.800$ Part of what I'm going to be showing you today
- $26\ 00:01:10.800 \longrightarrow 00:01:12.390$ is really the work of a Master's student

- $27\ 00:01:12.390 \longrightarrow 00:01:14.670$ that I've been working with this summer, that's Bowen,
- 28 00:01:14.670 --> 00:01:16.170 and really, I'd like to thank Bowen
- 29 00:01:16.170 --> 00:01:17.640 for a lot of the simulation,
- 30~00:01:17.640 --> 00:01:20.580 and a lot of the TE calculation I'll show you later.
- $31\ 00:01:20.580 --> 00:01:23.370$ This project, more generally, was born out of conversations
- $32\ 00{:}01{:}23.370 \dashrightarrow 00{:}01{:}27.690$ with Brent Doiron and Lek-Heng Lim here at Chicago.
- $33\ 00:01:27.690 \longrightarrow 00:01:29.130$ Brent really was the inspiration
- $34\ 00{:}01{:}29.130 \dashrightarrow 00{:}01{:}32.610$ for starting to venture into computational neuroscience.
- 35 00:01:32.610 --> 00:01:35.253 I really say that I am new to this world,
- $36\ 00:01:35.253 \ --> 00:01:37.530$ this world is exciting to me, but really it's a world
- $37\ 00:01:37.530 \longrightarrow 00:01:41.700$ that I am actively exploring and learning about.
- $38~00:01:41.700 \longrightarrow 00:01:44.400$ So I look forward to conversations afterwards
- $39\ 00:01:44.400 \longrightarrow 00:01:46.170$ to learn more here.
- 40 00:01:46.170 --> 00:01:47.940 My background was much more inspired
- $41~00:01:47.940 \longrightarrow 00:01:50.973$ by Lek-Heng's work in computational technology,
- $42\ 00:01:52.380 --> 00:01:54.300$ and some of what I'll be presenting today
- $43\ 00:01:54.300 \longrightarrow 00:01:56.553$ is really inspired by conversations with him.
- $44\ 00{:}01{:}57.690 \dashrightarrow 00{:}02{:}01.200$ So, let's start with some introduction and motivation.
- $45\ 00:02:01.200 \longrightarrow 00:02:03.300$ The motivation, personally, for this talk.
- $46~00:02:04.620 \longrightarrow 00:02:06.420$ So it goes back, really, to work that I started
- $47\ 00:02:06.420 \longrightarrow 00:02:07.800$ when I was a graduate student.
- $48~00:02:07.800 \longrightarrow 00:02:10.530$ I've had this long standing interest in the interplay
- $49\ 00:02:10.530 --> 00:02:14.430$ between structure and dynamics, in particular in networks.
- 50 00:02:14.430 --> 00:02:15.570 I've been interested in questions like

- $51\ 00:02:15.570 \longrightarrow 00:02:17.310$ how does the structure of a network determine
- $52\ 00:02:17.310 \longrightarrow 00:02:20.880$ dynamics of processes on that network.
- 53 00:02:20.880 --> 00:02:23.700 And, in turn, how do processes on that network
- 54 00:02:23.700 --> 00:02:26.250 give rise to structure?
- $55\ 00:02:26.250 \longrightarrow 00:02:27.830$ On the biological side...
- 56 00:02:29.580 --> 00:02:32.370 On the biological side, in today's talk,
- $57\ 00:02:32.370 --> 00:02:36.330$ I'm going to be focusing on applications of this question
- $58\ 00:02:36.330 \longrightarrow 00:02:37.680$ within neural networks.
- 59~00:02:37.680 --> 00:02:40.020 And I think that this world of computational neuroscience
- $60\ 00:02:40.020$ --> 00:02:42.150 is really exciting if you're interested in this interplay
- 61 00:02:42.150 --> 00:02:43.920 between structure and dynamics,
- $62\ 00:02:43.920 --> 00:02:46.530$ because neural networks encode, transmit, and process
- $63\ 00:02:46.530 \longrightarrow 00:02:49.140$ information via dynamical processes.
- $64~00:02:49.140 \dashrightarrow 00:02:53.340$ For example, the process, the dynamical process
- $65~00:02:53.340 \dashrightarrow 00:02:56.160$ of a neural network is directed by the wiring patterns,
- $66\ 00:02:56.160 \longrightarrow 00:02:58.440$ by the structure of that network, and moreover,
- $67\ 00{:}02{:}58.440 {\:{\mbox{--}}\!>\:} 00{:}03{:}00.840$ if you're talking about some sort of learning process,
- $68~00:03:00.840 \longrightarrow 00:03:03.660$ then those wiring patterns can change and adapt
- 69~00:03:03.660 --> 00:03:06.660 during the learning process, so they are themselves dynamic.
- $70~00:03:07.800 \longrightarrow 00:03:09.810$ In this area, I've been interested in questions like,
- $71\ 00:03:09.810 \longrightarrow 00:03:11.760$ how is the flow of information governed
- $72\ 00:03:11.760 \longrightarrow 00:03:13.500$ by the wiring pattern,
- 73~00:03:13.500 --> 00:03:16.920 how do patterns of information flow present themselves

- $74\ 00:03:16.920 --> 00:03:19.140$ in data, and can they be inferred from that data,
- $75\ 00:03:19.140 \longrightarrow 00:03:20.730$ and what types of wiring patterns
- 76 00:03:20.730 --> 00:03:22.323 might develop during learning.
- 77 00:03:23.910 --> 00:03:25.020 Answering questions of this type
- $78\ 00:03:25.020 \longrightarrow 00:03:26.340$ requires a couple of things.
- $79\ 00:03:26.340 \longrightarrow 00:03:28.860$ So the very, very big picture requires a language
- $80\ 00:03:28.860 \longrightarrow 00:03:30.930$ for describing structures and patterns,
- 81 00:03:30.930 --> 00:03:32.550 it requires having a dynamical process,
- 82 00:03:32.550 --> 00:03:35.040 some sort of model for the neural net,
- 83 00:03:35.040 --> 00:03:37.530 and it requires a generating model
- 84 00:03:37.530 --> 00:03:40.080 that generates initial structure,
- $85\ 00:03:40.080 \longrightarrow 00:03:42.330$ and links structure to dynamics.
- $86\ 00{:}03{:}42.330 \dashrightarrow 00{:}03{:}45.420$ Alternatively, if we don't generate things using a model,
- $87\ 00:03:45.420 --> 00:03:47.460$ if we have some sort of observable or data,
- $88\ 00:03:47.460 \dashrightarrow 00:03:49.020$ then we can try to work in the other direction
- $89\ 00:03:49.020 --> 00:03:51.540$ and go from dynamics to structure.
- $90\ 00:03:51.540 --> 00:03:54.150$ Today, during this talk, I'm going to be focusing really
- 91 00:03:54.150 --> 00:03:55.320 on this first piece,
- $92\ 00:03:55.320 \longrightarrow 00:03:57.480$ on a language for describing structures and patterns,
- 93 $00:03:57.480 \longrightarrow 00:03:58.560$ and on the second piece,
- $94\ 00:03:58.560 --> 00:04:01.350$ on an observable that I've been working on
- $95\ 00:04:01.350 --> 00:04:05.010$ trying to compute to use to try to connect
- $96\ 00:04:05.010 \longrightarrow 00:04:07.530$ these three points together.
- 97 00:04:07.530 --> 00:04:10.140 So, to get started, a little bit of biology.
- 98 00:04:10.140 --> 00:04:12.540 Really, I was inspired in this project by a paper
- 99 00:04:12.540 --> 00:04:14.485 from Keiji Miura.
- 100 00:04:14.485 --> 00:04:16.650 He was looking at a coupled oscillator model,
- $101\ 00:04:16.650 \longrightarrow 00:04:19.770$ this was a Kuramoto model for neural activity

- $102\ 00:04:19.770 \longrightarrow 00:04:22.140$ where the firing dynamics interact with the wiring.
- $103\ 00:04:22.140 \longrightarrow 00:04:25.650$ So the wiring that couples the oscillators
- $104\ 00:04:25.650 \longrightarrow 00:04:28.860$ would adapt on a slower timescale
- $105\ 00:04:28.860 \longrightarrow 00:04:31.440$ than the oscillators themselves,
- $106\ 00:04:31.440 --> 00:04:33.570$ and that adaptation could represent
- $107\ 00:04:33.570 \longrightarrow 00:04:35.970$ different types of learning processes.
- $108\ 00:04:35.970 \longrightarrow 00:04:39.660$ For example, the fire-together wire-together rules,
- 109 00:04:39.660 --> 00:04:40.560 so Hebbian learning,
- 110 00:04:40.560 --> 00:04:43.110 you could look at causal learning rules,
- $111\ 00:04:43.110 --> 00:04:44.790$ or anti-Hebbian learning rules.
- 112 00:04:44.790 --> 00:04:48.240 This is just an example of one, of the system.
- 113 00:04:48.240 --> 00:04:49.980 This system of (indistinct) is sort of interesting
- $114\ 00{:}04{:}49.980 \dashrightarrow 00{:}04{:}52.410$ because it can generate all sorts of different patterns.
- 115 00:04:52.410 --> 00:04:53.910 You can see synchronized firing,
- 116 00:04:53.910 --> 00:04:55.110 you can see traveling waves,
- $117\ 00:04:55.110 \longrightarrow 00:04:56.610$ you can see chaos.
- $118\ 00:04:56.610 \longrightarrow 00:04:59.280$ These occur at different critical boundaries.
- $119\ 00:04:59.280 --> 00:05:01.170$ So you can see phase transmissions
- $120\ 00:05:01.170 --> 00:05:03.570$ when you have large collections of these oscillators.
- $121\ 00:05:03.570 \longrightarrow 00:05:05.100$ And depending on how they're coupled together,
- $122\ 00:05:05.100 \longrightarrow 00:05:06.333$ it behaves differently.
- $123\ 00:05:07.410 \dashrightarrow 00:05:10.320$ In particular, what's interesting here is that
- 124 00:05:10.320 --> 00:05:13.350 starting from some random seed topology,
- $125\ 00:05:13.350 \longrightarrow 00:05:16.170$ the dynamics play forward from that initial condition,
- $126\ 00:05:16.170 \longrightarrow 00:05:17.910$ and that random seed topology
- $127\ 00:05:17.910 --> 00:05:19.920$ produces an ensemble of wiring patterns
- $128\ 00:05:19.920 \longrightarrow 00:05:21.527$ that are themselves random.

- $129\ 00:05:21.527 \longrightarrow 00:05:23.850$ And we can think of that ensemble of wiring patterns
- $130\ 00{:}05{:}23.850 \dashrightarrow 00{:}05{:}28.083$ as being chaotic realizations of some random initialization.
- $131\ 00:05:29.460 --> 00:05:31.560$ That said, you can also observe structures
- $132\ 00:05:31.560 \longrightarrow 00:05:33.360$ within the systems of coupled oscillators.
- $133\ 00:05:33.360 \longrightarrow 00:05:35.670$ So you can see large scale cyclic structures
- $134\ 00:05:35.670 \longrightarrow 00:05:37.830$ representing organized causal firing patterns
- $135\ 00:05:37.830 \longrightarrow 00:05:39.840$ in certain regimes.
- $136\ 00:05:39.840 \longrightarrow 00:05:40.980$ So this is a nice example
- $137\ 00{:}05{:}40.980 \dashrightarrow 00{:}05{:}42.510$ where graph structure and learning parameters
- 138 00:05:42.510 --> 00:05:44.460 can determine dynamics, and in turn,
- 139 00:05:44.460 --> 00:05:46.710 where those dynamics can determine structure.
- 140 00:05:48.030 --> 00:05:49.440 On the other side, you can also think about
- $141\ 00{:}05{:}49.440 \dashrightarrow 00{:}05{:}51.940$ a data-driven side instead of a model-driven side.
- $142\ 00:05:53.460 \longrightarrow 00:05:55.590$ If we empirically observe sample trajectories
- $143\ 00:05:55.590 --> 00:05:57.720$ of some observables, for example, neuron recordings,
- $144\ 00:05:57.720 --> 00:05:59.070$ then we might hope to infer something
- $145\ 00{:}05{:}59.070 \dashrightarrow 00{:}06{:}01.050$ about the connectivity that generates them.
- $146\ 00:06:01.050 \longrightarrow 00:06:03.750$ And so here, instead of starting by posing a model,
- $147\ 00:06:03.750 \longrightarrow 00:06:06.000$ and then simulating it and setting up how it behaves,
- $148\ 00:06:06.000 \longrightarrow 00:06:07.440$ we can instead study data,
- $149\ 00:06:07.440 \longrightarrow 00:06:09.900$ or try to study structure in data.
- $150\ 00{:}06{:}09.900 \dashrightarrow 00{:}06{:}12.420$ Often, that data comes in the form of covariance matrices
- $151\ 00:06:12.420 \longrightarrow 00:06:14.040$ representing firing rates.
- $152\ 00:06:14.040 \longrightarrow 00:06:15.330$ And these covariance matrices

 $153\ 00:06:15.330 \longrightarrow 00:06:19.110$ may be auto covariance matrices with some sort of time-lag.

 $154\ 00:06:19.110 \longrightarrow 00:06:21.660$ Here, there are a couple of standard structural approaches.

 $155\ 00:06:21.660 --> 00:06:24.540$ So there's a motivic expansion approach.

 $156\ 00:06:24.540 \longrightarrow 00:06:28.350$ This was at least introduced by Brent Doiron's lab,

 $157\ 00:06:28.350 \longrightarrow 00:06:30.450$ with his student, Gabe Ocker.

 $158\ 00:06:30.450 \longrightarrow 00:06:33.600$ Here, the idea is that you define some graph motifs,

 $159\ 00:06:33.600 \longrightarrow 00:06:35.730$ and then you can study the dynamics

 $160\ 00:06:35.730 \longrightarrow 00:06:37.530$ in terms of those graph motifs.

 $161\ 00:06:37.530 \longrightarrow 00:06:41.010$ For example, if you build a power series in those motifs,

 $162\ 00{:}06{:}41.010 \dashrightarrow 00{:}06{:}43.770$ then you can try to represent your covariance matrices

 $163\ 00:06:43.770 \longrightarrow 00:06:45.060$ in terms of that power series.

 $164\ 00:06:45.060 --> 00:06:46.170$ And this is something we're gonna talk about

 $165\ 00:06:46.170 \longrightarrow 00:06:47.130$ quite a bit today.

 $166\ 00{:}06{:}47.130 \dashrightarrow 00{:}06{:}49.350$ This really, part of why I was inspired by this work is

167 00:06:49.350 --> 00:06:50.670 I had been working separately

 $168\ 00:06:50.670 \longrightarrow 00:06:52.650$ on the idea of looking at covariance matrices

 $169\ 00:06:52.650 \longrightarrow 00:06:54.903$ in terms of these power series expansions.

 $170\ 00{:}06{:}56.040 {\: -->\:} 00{:}06{:}59.160$ This is also connected to topological data analysis,

 $171\ 00:06:59.160 --> 00:07:01.170$ and this is where the conversations with Lek-Heng

 $172\ 00:07:01.170 \longrightarrow 00:07:02.940$ played a role in this work.

173 00:07:02.940 --> 00:07:06.690 Topological data analysis aims to construct graphs

174 00:07:06.690 --> 00:07:08.460 representing dynamical systems.

 $175\ 00{:}07{:}08.460 --> 00{:}07{:}10.538$ For example, you might look at the dynamical similarity

176 00:07:10.538 --> 00:07:12.990 of firing patterns of certain neurons,

 $177\ 00:07:12.990 \dashrightarrow 00:07:16.743$ and then try to study the topology of those graphs.

178 00:07:17.730 --> 00:07:19.530 Again, this leads to similar questions,

 $179\ 00:07:19.530 --> 00:07:21.120$ but we could be a little bit more precise here

 $180\ 00:07:21.120 \longrightarrow 00:07:22.570$ for thinking in neuroscience.

 $181\ 00:07:23.580 \longrightarrow 00:07:25.350$ We can say more precisely, for example,

182 00:07:25.350 --> 00:07:28.590 how is information processing and transfer represented,

 $183\ 00:07:28.590 --> 00:07:30.570$ both in these covariance matrices

 $184\ 00:07:30.570 \longrightarrow 00:07:33.390$ and the structures that we hope to extract from them?

185 00:07:33.390 --> 00:07:36.330 In particular, can we try and infer causality

186 00:07:36.330 --> 00:07:37.893 from firing patterns?

 $187\ 00:07:39.420$ --> 00:07:41.847 And this is fundamentally an information theoretic question.

188 00:07:41.847 --> 00:07:42.870 And really, we're asking,

 $189\ 00{:}07{:}42.870 \dashrightarrow 00{:}07{:}45.420$ can we study the directed exchange of information

 $190\ 00:07:45.420 \longrightarrow 00:07:47.400$ from trajectories?

191 00:07:47.400 --> 00:07:49.320 Here, one approach, I mean, in some sense,

 $192\ 00{:}07{:}49.320$ --> $00{:}07{:}52.740$ you can never tell causality without some underlying model,

 $193\ 00:07:52.740 \longrightarrow 00:07:55.770$ without some underlying understanding and mechanism,

 $194\ 00:07:55.770 \longrightarrow 00:07:57.540$ so if all we can do is observe,

 $195~00{:}07{:}57.540 \dashrightarrow 00{:}08{:}00.510$ then we need to define what we mean by causality.

 $196\ 00:08:00.510$ --> 00:08:03.780 A reasonable standard definition here is Wiener causality,

 $197\ 00:08:03.780 \longrightarrow 00:08:06.180$ which says that two time series share a causal relation,

 $198\ 00:08:06.180 \longrightarrow 00:08:08.040$ so we say x causes y,

 $199\ 00:08:08.040 \longrightarrow 00:08:11.520$ if the history of x informs the future of y.

- 200 00:08:11.520 --> 00:08:14.250 And note that here, cause, I put in quotes,
- $201\ 00:08:14.250 \longrightarrow 00:08:15.540$ really means forecasts.
- $202\ 00:08:15.540 \longrightarrow 00:08:18.180$ It means that the past, or the present of x,
- $203\ 00:08:18.180 \longrightarrow 00:08:21.630$ carries relevant information about the future of y.
- $204\ 00:08:21.630 \longrightarrow 00:08:26.190$ A natural measure of that information is transfer entropy.
- $205\ 00:08:26.190 --> 00:08:29.715$ Transfer entropy was introduced by Schrieber in 2000,
- $206\ 00:08:29.715 --> 00:08:31.530$ and is the expected KL divergence
- 207 00:08:31.530 --> 00:08:35.340 between the distribution of the future of y
- $208\ 00:08:35.340 \longrightarrow 00:08:38.010$ given the history of x,
- $209\ 00{:}08{:}38.010 \dashrightarrow 00{:}08{:}41.130$ and the marginal distribution of the future of y.
- $210\ 00{:}08{:}41.130 \dashrightarrow 00{:}08{:}43.110$ So essentially, it's how much predictive information
- $211\ 00:08:43.110 \longrightarrow 00:08:44.763$ does x carry about y.
- $212\ 00:08:46.080 --> 00:08:48.450$ This is a nice quantity for a couple of reasons.
- $213\ 00:08:48.450 --> 00:08:51.330$ First, it's zero when two trajectories are independent.
- 214 00:08:51.330 --> 00:08:52.920 Second, since it's just defining
- $215\ 00{:}08{:}52.920$ --> $00{:}08{:}55.500$ some of these conditional distributions, it's model free,
- 216 00:08:55.500 --> 00:08:57.510 so I put here no with a star,
- 217 00:08:57.510 --> 00:09:00.660 because generative assumptions actually do matter
- $218\ 00:09:00.660 \dashrightarrow 00:09:02.340$ when you go to try and compute it, but in principle,
- $219\ 00:09:02.340 \dashrightarrow 00:09:04.530$ it's defined independent of the model.
- 220 00:09:04.530 \rightarrow 00:09:07.470 Again, unlike some other effective causality measures.
- 221 00:09:07.470 --> 00:09:11.340 it doesn't require introducing some time-lag to define.
- 222 00:09:11.340 --> 00:09:13.350 It's a naturally directed quantity.

- $223\ 00:09:13.350 \longrightarrow 00:09:14.640$ We can say that the future of y
- $224\ 00:09:14.640 \longrightarrow 00:09:16.680$ conditioned on the past of x...
- 225 00:09:16.680 --> 00:09:20.370 That transfer entropy is defined in terms of the future of y
- $226\ 00:09:20.370 \longrightarrow 00:09:22.830$ conditioned on the past of x and y.
- 227 00:09:22.830 --> 00:09:27.090 And that quantity is directed, because reversing x and y
- $228\ 00:09:27.090 \longrightarrow 00:09:29.670$ does not symmetrically change the statement.
- 229 00:09:29.670 --> 00:09:31.860 This is different than quantities like mutual information
- 230 00:09:31.860 --> 00:09:34.290 or correlation, that are also often used
- $231\ 00:09:34.290$ --> 00:09:36.870 to try and measure effective connectivity in networks
- $232\ 00{:}09{:}36.870 \dashrightarrow 00{:}09{:}39.843$ which are fundamentally symmetric quantities.
- 233 00:09:41.400 --> 00:09:42.960 Transfer entropy is also less corrupted
- 234 00:09:42.960 --> 00:09:45.840 by measurement noise, linear mixing of signals,
- $235\ 00:09:45.840 \longrightarrow 00:09:48.393$ or shared coupling to external sources.
- 236 00:09:49.800 --> 00:09:51.870 Lastly, and maybe most interestingly,
- $237\ 00:09:51.870 \longrightarrow 00:09:54.000$ if we think in terms of correlations,
- 238 00:09:54.000 --> 00:09:55.590 correlations are really moments,
- 239 00:09:55.590 --> 00:09:57.360 correlations are really about covariances, right,
- $240\ 00:09:57.360 \longrightarrow 00:09:58.980$ second order moments.
- 241 00:09:58.980 --> 00:10:00.810 Transfer entropies, these are about entropies,
- $242\ 00:10:00.810 \longrightarrow 00:10:03.780$ these are logs of distributions,
- $243\ 00:10:03.780 --> 00:10:06.360$ and so they depend on the full shape of these distributions.
- $244\ 00{:}10{:}06.360 \dashrightarrow 00{:}10{:}09.870$ Which means that transfer entropy can capture coupling
- $245\ 00:10:09.870 \longrightarrow 00:10:13.080$ that is maybe not apparent, or not obvious
- $246\ 00{:}10{:}13.080 \dashrightarrow 00{:}10{:}16.203$ just looking at second order moment type analysis.
- $247\ 00{:}10{:}17.280 \dashrightarrow 00{:}10{:}20.070$ So transfer entropy has been applied pretty broadly.

- 248 00:10:20.070 --> 00:10:22.440 It's been applied to spiking cortical networks
- 249 00:10:22.440 --> 00:10:23.610 and calcium imaging,
- $250\ 00:10:23.610 \longrightarrow 00:10:28.560$ to MEG data in motor tasks and auditory discrimination,
- 251 00:10:28.560 --> 00:10:30.570 it's been applied to emotion recognition,
- $252\ 00:10:30.570 \longrightarrow 00:10:31.740$ precious metal prices
- 253 00:10:31.740 --> 00:10:34.050 and multivariate time series forecasting,
- 254 00:10:34.050 --> 00:10:36.180 and more recently, to accelerate learning
- $255\ 00:10:36.180 \longrightarrow 00:10:38.040$ in different artificial neural nets.
- 256 00:10:38.040 --> 00:10:39.990 So you can look at feedforward architectures,
- $257\ 00:10:39.990$ --> 00:10:42.450 convolutional architectures, even recurrent neural nets.
- $258\ 00:10:42.450 \dashrightarrow 00:10:45.120$ And transfer entropy has been used to accelerate learning
- $259\ 00:10:45.120 \longrightarrow 00:10:46.443$ in those frameworks.
- 260 00:10:48.570 --> 00:10:49.590 For this part of the talk,
- $261\ 00{:}10{:}49.590 \dashrightarrow 00{:}10{:}52.470$ I'd like to focus really on two questions.
- 262 00:10:52.470 --> 00:10:55.050 First, how do we compute transfer entropy,
- $263\ 00:10:55.050 \longrightarrow 00:10:58.380$ and then second, if we could compute transfer entropy,
- $264\ 00:10:58.380 \longrightarrow 00:10:59.700$ and build a graph out of that,
- $265\ 00{:}10{:}59.700 \dashrightarrow 00{:}11{:}01.410$ how would we study the structure of that graph?
- 266 $00:11:01.410 \longrightarrow 00:11:04.053$ Essentially, how is information flow structured?
- $267\ 00:11:05.460 \longrightarrow 00:11:07.660$ We'll start with computing transfer entropy.
- 268 00:11:09.120 --> 00:11:10.140 To compute transfer entropy,
- $269\ 00:11:10.140 \longrightarrow 00:11:12.540$ we actually need to write down an equation.
- 270 00:11:12.540 --> 00:11:14.400 So transfer entropy was originally introduced
- $271\ 00{:}11{:}14.400 \dashrightarrow 00{:}11{:}17.820$ for discrete time arbitrary order Markov processes.
- 272 00:11:17.820 --> 00:11:20.337 So suppose we have two Markov processes X and Y.

- 273 00:11:20.337 \rightarrow 00:11:24.997 And we'll let Xn denote the state of process X at time n,
- 274 00:11:24.997 --> 00:11:27.390 and Xnk, where the k is in superscript,
- 275 00:11:27.390 --> 00:11:31.170 to denote the sequence starting from n minus k plus 1
- $276\ 00:11:31.170 \longrightarrow 00:11:32.010$ going up to n.
- 277 00:11:32.010 --> 00:11:37.010 So that's the last k states that the process X visited.
- 278 00:11:37.260 --> 00:11:39.990 Then, the transfer entropy from Y to X,
- 279 00:11:39.990 --> 00:11:42.663 they're denoted T, Y over to X,
- 280 00:11:43.980 \rightarrow 00:11:48.980 is the entropy of the future of X, conditioned on its past,
- 281 00:11:50.130 --> 00:11:53.640 minus the entropy of the future of X conditioned on its past
- $282\ 00:11:53.640 \longrightarrow 00:11:56.280$ and the past of the trajectory Y.
- $283\ 00:11:56.280 \longrightarrow 00:11:57.320$ So here, you can think the transfer entropy
- 284 00:11:57.320 --> 00:11:58.950 is essentially the reduction in entropy
- 285 00:11:58.950 --> 00:12:03.450 of the future states of X when incorporating the past of Y.
- $286\ 00:12:03.450 \longrightarrow 00:12:04.950$ This means that computing transfer entropy
- $287\ 00:12:04.950 \dashrightarrow 00:12:07.140$ reduces to estimating essentially these entropies.
- $288\ 00{:}12{:}07.140 \dashrightarrow 00{:}12{:}08.850$ That means we need to estimate essentially
- $289\ 00{:}12{:}08.850 --> 00{:}12{:}12.633$ the conditional distributions inside of these parentheses.
- $290\ 00:12:13.620 \dashrightarrow 00:12:16.410$ That's easy for certain processes, so for example,
- 291 00:12:16.410 --> 00:12:18.660 if X and Y are Gaussian processes,
- 292 00:12:18.660 --> 00:12:20.160 then really what we're trying to compute
- 293 00:12:20.160 --> 00:12:21.690 is conditional mutual information,
- $294\ 00:12:21.690 \longrightarrow 00:12:22.800$ and there are nice equations
- $295\ 00:12:22.800 \longrightarrow 00:12:24.510$ for conditional mutual information
- $296\ 00:12:24.510 --> 00:12:26.220$ when you have Gaussian random variables.

- 297 00:12:26.220 --> 00:12:29.250 So if I have three Gaussian random variables, X, Y, Z,
- $298\ 00{:}12{:}29.250 \dashrightarrow 00{:}12{:}32.700$ possibly multivariate, with joint covariant sigma,
- $299\ 00:12:32.700 \longrightarrow 00:12:34.560$ then the conditional mutual information
- $300\ 00{:}12{:}34.560 \dashrightarrow 00{:}12{:}37.140$ between these variables, so the mutual information
- 301 00:12:37.140 --> 00:12:38.910 between X and Y conditioned on Z,
- $302\ 00:12:38.910 --> 00:12:41.610$ is just given by this ratio of log determinants
- $303\ 00:12:41.610 \longrightarrow 00:12:42.710$ of those convariances.
- $304\ 00:12:44.970 \longrightarrow 00:12:48.210$ In particular, a common test model used
- $305\ 00:12:48.210 --> 00:12:50.520$ in the transfer entropy literature
- $306\ 00{:}12{:}50.520 {\: --> \:} 00{:}12{:}52.530$ are linear auto-regressive processes,
- 307 00:12:52.530 --> 00:12:54.600 because a linear auto-regressive process,
- 308 00:12:54.600 --> 00:12:56.550 when perturbed by Gaussian noise,
- $309\ 00:12:56.550 \longrightarrow 00:12:58.200$ produces a Gaussian process.
- $310\ 00:12:58.200 \longrightarrow 00:12:59.910$ All of the different joint marginal
- 311 00:12:59.910 --> 00:13:01.770 conditional distributions are all Gaussian,
- $312\ 00:13:01.770 \longrightarrow 00:13:03.090$ which means that we can compute
- $313\ 00{:}13{:}03.090 {\: \hbox{--}}{>}\ 00{:}13{:}05.610$ these covariances analytically, which then means
- $314\ 00{:}13{:}05.610 \dashrightarrow 00{:}13{:}07.290$ that you can compute the transfer entropy analytically.
- 315 00:13:07.290 --> 00:13:08.940 So these linear auto-regressive processes
- $316\ 00:13:08.940 \longrightarrow 00:13:10.080$ are nice test cases,
- $317\ 00:13:10.080 \longrightarrow 00:13:12.450$ 'cause you can do everything analytically.
- $318\ 00{:}13{:}12.450 \dots > 00{:}13{:}14.880$ They're also somewhat disappointing, or somewhat limiting,
- 319 00:13:14.880 --> 00:13:17.340 because in this linear auto-regressive case,
- $320\ 00{:}13{:}17.340 \dashrightarrow 00{:}13{:}20.223$ transfer entropy is the same as Granger causality.
- $321\ 00{:}13{:}21.630 \dashrightarrow 00{:}13{:}24.780$ And in this Gaussian case, essentially what we've done

- 322 00:13:24.780 --> 00:13:26.610 is we've reduced transfer entropy
- $323~00{:}13{:}26.610 \dashrightarrow 00{:}13{:}28.530$ to a study of time-lagged correlations.
- $324\ 00:13:28.530$ --> 00:13:31.530 So this becomes the same as a correlation based analysis.
- $325\ 00{:}13{:}31.530 \dashrightarrow 00{:}13{:}34.350$ We can't incorporate information beyond the second moments
- 326 00:13:34.350 --> 00:13:36.390 if we restrict ourselves to Gaussian processes,
- $327\ 00:13:36.390 --> 00:13:38.520$ or Gaussian approximations.
- $328\ 00:13:38.520 \longrightarrow 00:13:41.130$ The other thing to note is this is strongly model dependent,
- $329\ 00:13:41.130 \longrightarrow 00:13:42.630$ because this particular formula
- 330 00:13:42.630 --> 00:13:43.890 for computing mutual information
- 331 00:13:43.890 --> 00:13:46.383 depends on having Gaussian distributions.
- $332\ 00:13:49.530 \longrightarrow 00:13:53.220$ In a more general setting, or a more empirical setting,
- $333\ 00:13:53.220 \longrightarrow 00:13:54.960$ you might observe some data.
- 334~00:13:54.960 --> 00:13:56.130 You don't know if that data
- 335 00:13:56.130 --> 00:13:57.777 comes from some particular process,
- 336 00:13:57.777 --> 00:13:59.340 and you can't necessarily assume
- $337\ 00:13:59.340 \longrightarrow 00:14:01.080$ the conditional distribution is Gaussian.
- 338 00:14:01.080 \rightarrow 00:14:03.420 But we would still like to estimate transfer entropy,
- $339\ 00{:}14{:}03.420 \dashrightarrow 00{:}14{:}05.640$ which leads to the problem of estimating transfer entropy
- $340\ 00:14:05.640 \longrightarrow 00:14:08.040$ given an observed time series.
- $341\ 00{:}14{:}08.040 \dashrightarrow 00{:}14{:}10.530$ We would like to do this, again, sans model assumptions,
- 342 00:14:10.530 --> 00:14:13.140 so we don't want to assume Gaussianity.
- 343 00:14:13.140 --> 00:14:15.720 This is sort of trivial, again, I star that,
- $344\ 00:14:15.720 \longrightarrow 00:14:16.920$ in discrete state spaces,
- $345\ 00{:}14{:}16.920 --> 00{:}14{:}19.800$ because essentially it amounts to counting occurrences.
- $346\ 00{:}14{:}19.800 \longrightarrow 00{:}14{:}22.920$ But it becomes difficult whenever the state spaces are large

- $347\ 00:14:22.920 \longrightarrow 00:14:25.473$ and/or high dimensional, as they often are.
- $348\ 00:14:26.340 \longrightarrow 00:14:28.440$ This leads to a couple of different approaches.
- $349\ 00{:}14{:}28.440 \dashrightarrow 00{:}14{:}31.890$ So, as a first example, let's consider spike train data.
- 350 00:14:31.890 --> 00:14:34.170 So spike train data consists, essentially,
- $351\ 00{:}14{:}34.170 \dashrightarrow 00{:}14{:}38.700$ of binning the state of a neuron into either on or off.
- $352\ 00{:}14{:}38.700 \dashrightarrow 00{:}14{:}41.460$ So neurons, you can think either in a state zero or one.
- $353~00{:}14{:}41.460 \dashrightarrow 00{:}14{:}44.490$ And then a pairwise calculation for transfer entropy
- $354\ 00:14:44.490 --> 00:14:47.640$ only requires estimating a joint probability distribution
- $355\ 00:14:47.640 \longrightarrow 00:14:50.910$ over 4 to the k plus l states, where k plus l,
- $356\ 00:14:50.910 \longrightarrow 00:14:53.970$ k is the history of x that we remember,
- $357\ 00:14:53.970 \longrightarrow 00:14:55.860$ and l is the history of y.
- $358~00{:}14{:}55.860$ --> $00{:}15{:}00.860$ So if the Markov process generating the spike train data
- $359\ 00:15:01.350 \longrightarrow 00:15:04.200$ is not of high order, does not have a long memory,
- $360\ 00:15:04.200 \longrightarrow 00:15:06.390$ then these k and l can be small,
- 361 00:15:06.390 --> 00:15:08.160 and this state space is fairly small,
- 362 00:15:08.160 --> 00:15:09.900 so this falls into that first category,
- $363\ 00:15:09.900 \longrightarrow 00:15:11.520$ when we're looking at a discrete state space
- $364\ 00:15:11.520 \longrightarrow 00:15:13.023$ and it's not too difficult.
- $365~00{:}15{:}14.880 \dashrightarrow 00{:}15{:}17.640$ In a more general setting, if we don't try to bin the states
- $366\ 00:15:17.640 \longrightarrow 00:15:19.380$ of the neurons to on or off,
- $367\ 00{:}15{:}19.380 {\: \hbox{--}}{>}\ 00{:}15{:}22.110$ for example, maybe we're looking at a firing rate model,
- $368\ 00:15:22.110 \longrightarrow 00:15:23.970$ where we want to look at the firing rates of the neurons,
- 369 00:15:23.970 --> 00:15:27.210 and that's a continuous random variable,
- $370\ 00:15:27.210 \longrightarrow 00:15:29.250$ then we need some other types of estimators.

- $371\ 00:15:29.250 \longrightarrow 00:15:30.720$ So the common estimator used here
- $372\ 00{:}15{:}30.720 \dashrightarrow 00{:}15{:}33.600$ is a kernel density estimator, or KSG estimator.
- $373\ 00:15:33.600 \longrightarrow 00:15:35.790$ And this is designed for large, continuous,
- $374\ 00:15:35.790 \longrightarrow 00:15:37.110$ or high dimensional state spaces,
- $375\ 00:15:37.110 \longrightarrow 00:15:39.273$ e.g., these firing rate models.
- $376\ 00:15:40.170 \longrightarrow 00:15:43.320$ Typically, the approach is to employ a Takens delay map,
- 377 00:15:43.320 --> 00:15:45.120 which embeds your high dimensional data
- $378\ 00:15:45.120 --> 00:15:47.670$ in some sort of lower dimensional space,
- $379~00{:}15{:}47.670 \dashrightarrow 00{:}15{:}50.250$ that tries to capture the intrinsic dimension
- $380\ 00:15:50.250$ --> 00:15:54.630 of the attractor that your dynamic process settles onto.
- 381 00:15:54.630 --> 00:15:56.970 And then you try to estimate an unknown density
- $382\ 00{:}15{:}56.970 \dashrightarrow 00{:}15{:}59.730$ based on this delay map using a k-nearest neighbor
- $383\ 00:15:59.730 --> 00:16:01.080$ kernel density estimate.
- $384\ 00{:}16{:}01.080 \dashrightarrow 00{:}16{:}04.290$ The advantage of this sort of k-nearest neighbor
- 385 00:16:04.290 --> 00:16:06.060 kernel density is it dynamically adapts
- $386~00{:}16{:}06.060 \dashrightarrow 00{:}16{:}08.640$ the width of the kernel given your sample density.
- $387\ 00:16:08.640 \longrightarrow 00:16:11.310$ And this has been implemented in some open source toolkits.
- $388\ 00:16:11.310 --> 00:16:13.493$ These are the toolkits that we've been working with.
- $389\ 00{:}16{:}15.210 \dashrightarrow 00{:}16{:}17.640$ So we've tested this on a couple of different models.
- 390 00:16:17.640 --> 00:16:18.780 And really, I'd say this work,
- 391 00:16:18.780 --> 00:16:20.310 this is still very much work in progress,
- $392\ 00:16:20.310 \longrightarrow 00:16:23.130$ this is work that Bowen was developing over the summer.
- $393\ 00{:}16{:}23.130 \dashrightarrow 00{:}16{:}26.490$ And so we developed a couple of different models to test.

- $394\ 00:16:26.490 \longrightarrow 00:16:29.310$ The first were these linear auto-regressive networks,
- $395\ 00:16:29.310 \longrightarrow 00:16:30.210$ and we just used these
- 396 00:16:30.210 --> 00:16:31.800 to test the accuracy of the estimators,
- 397 00:16:31.800 --> 00:16:34.140 because everything here is Gaussian, so you can compute
- $398\ 00:16:34.140 \longrightarrow 00:16:36.900$ the necessary transfer entropies analytically.
- $399~00:16:36.900 \longrightarrow 00:16:38.820$ The next, more interesting class of networks
- $400\ 00:16:38.820 --> 00:16:41.520$ are threshold linear networks, or TLNs.
- $401\ 00{:}16{:}41.520 \dashrightarrow 00{:}16{:}44.490$ These are a firing rate model, where your rate, r.
- $402\ 00:16:44.490 \longrightarrow 00:16:46.590$ obeys this stochastic differential equation.
- $403\ 00:16:46.590 \longrightarrow 00:16:50.940$ So the rate of change in the rate, dr(t), is...
- $404\ 00:16:50.940 \longrightarrow 00:16:54.690$ So you have sort of a leaf term, -r(t), and then plus,
- 405 00:16:54.690 --> 00:16:56.940 here, this is essentially a coupling,
- $406\ 00:16:56.940 \longrightarrow 00:16:59.963$ all of this is inside here, the brackets with a plus,
- $407\ 00:16:59.963 \longrightarrow 00:17:01.920$ this is like a (indistinct) function,
- 408 00:17:01.920 --> 00:17:03.840 so this is just taking the positive part
- $409\ 00:17:03.840 \longrightarrow 00:17:05.160$ of what's on the inside.
- 410 00:17:05.160 --> 00:17:07.590 Here, b is an activation threshold,
- $411\ 00{:}17{:}07.590 \dashrightarrow 00{:}17{:}10.860~\mathrm{W}$ is a wiring matrix, and then r are those rates again.
- 412 00:17:10.860 --> 00:17:13.200 And then C here, that's essentially covariants
- 413 00:17:13.200 --> 00:17:16.590 for some noise term perturbing this process.
- $414\ 00:17:16.590 \longrightarrow 00:17:19.260$ We use these TLNs to test the sensitivity
- $415\ 00:17:19.260 --> 00:17:20.820$ of our transfer entropy estimators
- $416\ 00:17:20.820$ --> 00:17:23.730 to common and private noise sources as you change C,
- $417\ 00{:}17{:}23.730 \dashrightarrow 00{:}17{:}27.180$ as well as how well the transfer entropy network agrees
- $418\ 00:17:27.180 \longrightarrow 00:17:29.433$ with the wiring matrix.

- 419 00:17:30.720 --> 00:17:33.300 A particular class of TLNs that were really nice
- $420\ 00:17:33.300 \longrightarrow 00:17:35.010$ for these experiments are called
- 421 00:17:35.010 --> 00:17:36.990 combinatorial threshold linear networks.
- $422\ 00:17:36.990 \longrightarrow 00:17:38.070$ These are really pretty new,
- $423\ 00:17:38.070 \longrightarrow 00:17:42.270$ these were introduced by Carina Curto's lab this year.
- $424\ 00{:}17{:}42.270 \dashrightarrow 00{:}17{:}46.500$ And really, this was inspired by a talk I'd seen her give
- 425 00:17:46.500 --> 00:17:49.110 at FACM in May.
- $426\ 00:17:49.110 --> 00:17:50.820$ These are threshold linear networks
- $427\ 00:17:50.820 \longrightarrow 00:17:52.320$ where the weight matrix here, W,
- 428 00:17:52.320 --> 00:17:55.440 representing the wiring of the neurons,
- $429\ 00:17:55.440 \longrightarrow 00:17:58.020$ is determined by a directed graph G.
- 430 00:17:58.020 --> 00:17:59.610 So you start with some directed graph G.
- $431\ 00:17:59.610 \longrightarrow 00:18:00.810$ that's what's shown here on the left.
- 432 00:18:00.810 --> 00:18:02.910 This figure is adapted from Carina's paper,
- 433 00:18:02.910 --> 00:18:03.743 this is a very nice paper
- $434\ 00:18:03.743 \longrightarrow 00:18:05.470$ if you'd like to take a look at it.
- 435 00:18:06.690 --> 00:18:09.003 And if i and j are not connected,
- $436\ 00:18:10.020 \longrightarrow 00:18:12.030$ then the weight matrix is assigned one value,
- $437\ 00:18:12.030$ --> 00:18:14.460 and if they are connected, then it's assigned another value.
- $438\ 00:18:14.460 \longrightarrow 00:18:18.300$ And the wiring is zero if i equals j.
- $439\ 00:18:18.300 \longrightarrow 00:18:20.430$ These networks are nice if we want to test
- $440\ 00{:}18{:}20.430 \dashrightarrow 00{:}18{:}23.820$ structural hypotheses, because it's very easy to predict
- 441 00:18:23.820 --> 00:18:26.820 from the input graph how the output dynamics
- $442\ 00:18:26.820 \longrightarrow 00:18:28.170$ of the network should behave.
- $443\ 00:18:28.170 \longrightarrow 00:18:29.610$ They're a really beautiful analysis
- $444\ 00:18:29.610 --> 00:18:31.530$ that Carina does in this paper to show
- 445 00:18:31.530 --> 00:18:32.940 that you can produce all these different

- 446 00:18:32.940 --> 00:18:34.890 interlocking patterns of limit cycles,
- 447 00:18:34.890 --> 00:18:36.990 and multi-step states, and chaos,
- 448 00:18:36.990 --> 00:18:38.220 and all these nice patterns,
- $449\ 00:18:38.220 \longrightarrow 00:18:39.330$ and you can design them
- $450\ 00:18:39.330 \longrightarrow 00:18:42.723$ by picking these nice directed graphs.
- $451\ 00{:}18{:}43.890 --> 00{:}18{:}46.230$ The last class of networks that we've built to test
- $452\ 00:18:46.230 \longrightarrow 00:18:47.760$ are leaky-integrate and fire networks.
- $453\ 00:18:47.760 \longrightarrow 00:18:51.000$ So here, we're using a leaky integrate and fire model,
- 454 00:18:51.000 --> 00:18:54.390 where our wiring matrix W is drawn randomly,
- 455 00:18:54.390 --> 00:18:56.580 it's block-stochastic,
- $456\ 00:18:56.580$ --> 00:18:59.820 which means that it's Erdos-Renyi between blocks.
- 457 00:18:59.820 --> 00:19:02.010 And it's a balanced network,
- 458 00:19:02.010 --> 00:19:04.200 so we have excitatory and inhibitory neurons
- $459\ 00:19:04.200 \longrightarrow 00:19:08.100$ that talk to each other and maintain a balance
- $460\ 00:19:08.100 \longrightarrow 00:19:09.210$ in the dynamics here.
- $461\ 00:19:09.210$ --> 00:19:11.340 The hope is to pick a large enough scale network
- $462\ 00:19:11.340 --> 00:19:13.380$ that we see properly chaotic dynamics
- $463\ 00:19:13.380 --> 00:19:15.480$ using this leaky integrate and fire model.
- $464\ 00:19:17.340 \longrightarrow 00:19:20.760$ These tests have yielded fairly mixed results.
- $465\ 00:19:20.760 \longrightarrow 00:19:23.610$ So the simple tests behave as expected.
- $466\ 00:19:23.610 \longrightarrow 00:19:26.760$ So the estimators that are used are biased,
- $467\ 00:19:26.760 \longrightarrow 00:19:28.560$ and the bias typically decays slower
- $468\ 00:19:28.560 \longrightarrow 00:19:30.030$ than the variance estimation,
- $469\ 00{:}19{:}30.030 \dashrightarrow 00{:}19{:}32.490$ which means that you do need fairly long trajectories
- $470\ 00:19:32.490 \longrightarrow 00:19:36.240$ to try to properly estimate the transfer entropy.
- $471\ 00{:}19{:}36.240 \dashrightarrow 00{:}19{:}38.430$ That said, transfer entropy does correctly identify

- 472 00:19:38.430 --> 00:19:40.320 causal relationships in simple graphs,
- $473\ 00{:}19{:}40.320 \dashrightarrow 00{:}19{:}43.980$ and transfer entropy matches the underlying structure
- $474\ 00:19:43.980$ --> 00:19:47.550 used in combinatorial threshold linear networks, so CTLN.
- $475\ 00{:}19{:}48.810 \dashrightarrow 00{:}19{:}52.200$ Unfortunately, these results did not carry over as cleanly
- 476 00:19:52.200 --> 00:19:54.180 to the leaky integrate and fire models,
- $477\ 00:19:54.180 \longrightarrow 00:19:56.070$ or to larger models.
- 478 00:19:56.070 --> 00:19:58.410 So what I'm showing you on the right here,
- 479 00:19:58.410 --> 00:20:00.240 this is a matrix where we've calculated
- $480\ 00:20:00.240 \longrightarrow 00:20:01.500$ the pairwise transfer entropy
- $481\ 00:20:01.500 --> 00:20:06.240$ between all neurons in a 150 neuron balanced network.
- $482\ 00{:}20{:}06.240 \dashrightarrow 00{:}20{:}09.390$ This is shown absolute, this is shown in the log scale.
- 483 00:20:09.390 --> 00:20:11.280 And the main thing I want to highlight, first,
- 484 00:20:11.280 --> 00:20:12.390 taking a look at this matrix,
- $485\ 00:20:12.390 --> 00:20:15.030$ it's very hard to see exactly what the structure is.
- $486\ 00:20:15.030 \longrightarrow 00:20:16.530$ You see this banding?
- $487\ 00{:}20{:}16.530 \dashrightarrow 00{:}20{:}19.830$ That's because neurons tend to be highly predictive
- $488\ 00:20:19.830 \longrightarrow 00:20:20.790$ if they fire a lot.
- $489\ 00:20:20.790 \longrightarrow 00:20:22.020$ So there's a strong correlation
- 490 00:20:22.020 \rightarrow 00:20:25.410 between the transfer entropy between x and y,
- $491\ 00:20:25.410 \longrightarrow 00:20:27.603$ and just the activity level of x.
- $492\ 00{:}20{:}28.860 \dashrightarrow 00{:}20{:}31.170$ But it's hard to distinguish blockwise differences,
- $493\ 00:20:31.170 --> 00:20:34.290$ for example, between inhibitory neurons, excitatory neurons,
- 494 00:20:34.290 --> 00:20:35.760 and that really takes plotting out,

- $495\ 00:20:35.760 --> 00:20:38.640$ so here, this box and whisker plot on the bottom,
- $496\ 00:20:38.640 \longrightarrow 00:20:42.540$ this is showing you if we group entries of this matrix
- $497\ 00:20:42.540 \longrightarrow 00:20:43.530$ by type of connection.
- 498 00:20:43.530 --> 00:20:45.371 So maybe excitatory to excitatory,
- 499 00:20:45.371 --> 00:20:48.120 or inhibitor to excitatory, or so on,
- $500~00{:}20{:}48.120 \dashrightarrow 00{:}20{:}50.160$ that the distribution of realized transfer entropy
- 501 00:20:50.160 --> 00:20:52.050 is really different,
- $502\ 00:20:52.050 \longrightarrow 00:20:54.120$ but they're different in sort of subtle ways.
- 503 00:20:54.120 --> 00:20:57.273 So in this larger scale balanced network,
- 504 00:20:58.110 --> 00:21:02.370 it's much less clear whether transfer entropy
- $505\ 00:21:02.370 --> 00:21:05.160$ effectively is equated in some way
- 506 00:21:05.160 --> 00:21:07.803 with the true connectivity or wiring.
- 507 00:21:08.760 --> 00:21:10.230 In some ways, this is not a surprise,
- $508\ 00:21:10.230 \longrightarrow 00:21:11.760$ because the behavior of the balanced networks
- 509 00:21:11.760 --> 00:21:12.840 is inherently balanced,
- 510 00:21:12.840 --> 00:21:15.750 and Erdos-Renyi is inherently in the structure.
- $511\ 00{:}21{:}15.750 \dashrightarrow 00{:}21{:}19.110$ But there are ways in which these experiments have revealed
- 512 00:21:19.110 --> 00:21:22.290 confounding factors that are conceptual factors
- $513\ 00:21:22.290 \longrightarrow 00:21:25.410$ that make transfer entropies not an ideal measure,
- 514 00:21:25.410 --> 00:21:27.510 or maybe not as ideal as it seems,
- $515\ 00:21:27.510 \longrightarrow 00:21:29.400$ given the start of this talk.
- 516 00:21:29.400 --> 00:21:33.450 So for example, suppose two trajectories X and Y
- 517 00:21:33.450 --> 00:21:36.090 are both strongly driven by a third trajectory Z,
- 518 00:21:36.090 --> 00:21:38.520 but X responds to Z first.
- 519 00:21:38.520 --> 00:21:40.380 Well, then the present information about X,

- $520\ 00:21:40.380 \longrightarrow 00:21:41.460$ or the present state of X,
- 521 00:21:41.460 --> 00:21:43.230 carries information about the future of Y,
- $522\ 00:21:43.230 \longrightarrow 00:21:45.000$ so X is predictive of Y.
- 523 00:21:45.000 --> 00:21:47.280 So X forecasts Y, so in the transfer entropy
- $524~00:21:47.280 \longrightarrow 00:21:50.790$ or Wiener causality setting, we would say X causes Y,
- 525 00:21:50.790 --> 00:21:53.133 even if X and Y are only both responding to Z.
- $526~00:21:54.480 \longrightarrow 00:21:57.750$ So here, in this example, suppose you have a directed tree
- $527\ 00:21:57.750 \longrightarrow 00:22:02.100$ where information or dynamics propagate down the tree.
- 528 00:22:02.100 --> 00:22:06.570 If you look at this node here, Pj and i,
- 529 00:22:06.570 --> 00:22:10.920 Pj will react to essentially information
- $530\ 00:22:10.920 \longrightarrow 00:22:13.230$ traveling down this tree before i does,
- 531 00:22:13.230 --> 00:22:15.270 so Pj would be predictive for i,
- 532 00:22:15.270 --> 00:22:18.510 so we would observe an effective connection,
- $533\ 00:22:18.510 \longrightarrow 00:22:20.670$ where Pj forecasts i.
- $534~00{:}22{:}20.670 \dashrightarrow 00{:}22{:}22.650$ Which means that neurons that are not directly connected
- $535\ 00:22:22.650 \longrightarrow 00:22:25.920$ may influence each other, and that this transfer entropy,
- $536\ 00{:}22{:}25.920 \dashrightarrow 00{:}22{:}28.500$ really, you should think of in terms of forecasting,
- $537\ 00:22:28.500 \longrightarrow 00:22:32.103$ not in terms of being a direct analog to the wiring matrix.
- $538\ 00:22:33.270 \longrightarrow 00:22:34.980$ One way around this is to condition
- $539\ 00:22:34.980 --> 00:22:36.870$ on the state of the rest of the network
- 540 00:22:36.870 --> 00:22:38.520 before you start doing some averaging.
- 541 00:22:38.520 --> 00:22:40.890 This leads to some other notions of entropy,
- 542 00:22:40.890 --> 00:22:42.450 so, for example, causation entropy,
- $543\ 00:22:42.450 --> 00:22:43.800$ and this is sort of a promising direction,
- $544~00{:}22{:}43.800 \dashrightarrow 00{:}22{:}47.310$ but it's not a direction we've had time to explore yet.

- $545\ 00:22:47.310 \longrightarrow 00:22:49.260$ So that's the estimation side.
- $546\ 00:22:49.260 \longrightarrow 00:22:51.630$ Those are the tools for estimating transfer entropy.
- 547 00:22:51.630 --> 00:22:52.800 Now, let's switch gears
- $548~00{:}22{:}52.800 \dashrightarrow 00{:}22{:}55.170$ and talk about that second question I introduced,
- $549~00{:}22{:}55.170 \dashrightarrow 00{:}22{:}57.450$ which is essentially, how do we analyze structure.
- $550~00:22:57.450 \longrightarrow 00:23:00.450$ Suppose we could calculate a transfer entropy graph.
- $551\ 00:23:00.450 \longrightarrow 00:23:03.600$ How would we extract structural information from that graph?
- $552\ 00{:}23{:}03.600 \dashrightarrow 00{:}23{:}06.240$ And here, I'm going to be introducing some tools
- $553\ 00:23:06.240 \longrightarrow 00:23:07.530$ that I've worked on for a while
- $554\ 00:23:07.530 \longrightarrow 00:23:11.370$ for describing random structures and graphs.
- $555~00{:}23{:}11.370 \dashrightarrow 00{:}23{:}14.700$ These are tied back to some work I've really done
- $556~00{:}23{:}14.700 \dashrightarrow 00{:}23{:}17.730$ as a graduate student, and conversations with Lek-Heng.
- 557 00:23:17.730 --> 00:23:19.320 So we start in a really simple context,
- $558\ 00:23:19.320 \longrightarrow 00:23:20.670$ we just have a graph or network.
- $559\ 00:23:20.670 --> 00:23:22.560$ This could be directed or undirected,
- $560~00:23:22.560 \dashrightarrow 00:23:23.790$ and we're gonna require that it does not have self-loops,
- 561 00:23:23.790 --> 00:23:25.650 and that it's finite.
- 562 00:23:25.650 --> 00:23:27.930 We'll let V here be the number of vertices,
- $563\ 00:23:27.930 \longrightarrow 00:23:30.390$ and E be the number of edges.
- $564\ 00:23:30.390 --> 00:23:32.730$ Then the object of study that we'll introduce
- $565\ 00:23:32.730 \longrightarrow 00:23:34.020$ is something called an edge flow.
- $566\ 00:23:34.020 --> 00:23:35.340$ An edge flow is essentially a function
- $567\ 00:23:35.340 \longrightarrow 00:23:36.810$ on the edges of the graph.
- $568~00{:}23{:}36.810 \dashrightarrow 00{:}23{:}39.870$ So this is a function that accepts pairs of endpoints

- $569\ 00:23:39.870 \longrightarrow 00:23:41.580$ and returns a real number.
- 570 00:23:41.580 --> 00:23:42.990 And this is an alternating function,
- 571 00:23:42.990 --> 00:23:46.710 so if I take f(i, j), that's negative f(j, i),
- $572\ 00:23:46.710 --> 00:23:49.350$ because you can think of f(i,j) as being some flow,
- 573 00:23:49.350 --> 00:23:51.810 like a flow of material between i and j,
- $574\ 00:23:51.810 \longrightarrow 00:23:53.910$ hence this name, edge flow.
- 575 00:23:53.910 --> 00:23:55.620 This is analogous to a vector field,
- $576\ 00{:}23{:}55.620 {\:{\mbox{--}}}\!> 00{:}23{:}58.140$ because this is analogous to the structure of a vector field
- 577 00:23:58.140 --> 00:23:58.973 on the graph,
- $578\ 00:23:58.973$ --> 00:24:02.084 and represents some sort of flow between nodes.
- $579\ 00:24:02.084 \longrightarrow 00:24:04.440$ Edge flows are really sort of generic things.
- $580\ 00:24:04.440 --> 00:24:06.900$ So you can take this idea of an edge flow
- 581 00:24:06.900 --> 00:24:08.910 and apply it in a lot of different areas,
- $582\ 00:24:08.910 --> 00:24:09.870$ because really all you need
- $583~00{:}24{:}09.870 \dashrightarrow 00{:}24{:}11.970$ is you just need the structure of some alternating function
- $584\ 00:24:11.970 \longrightarrow 00:24:13.410$ on the edges of a graph.
- 585 00:24:13.410 --> 00:24:16.140 So I've read papers,
- $586~00:24:16.140 \dashrightarrow 00:24:18.570$ and worked in a bunch of these different areas.
- $587\ 00{:}24{:}18.570 \dashrightarrow 00{:}24{:}20.640$ Particularly, I've focused on applications of this
- $588~00{:}24{:}20.640 \dashrightarrow 00{:}24{:}24.660$ in game theory, in pairwise and social choice settings,
- 589 00:24:24.660 --> 00:24:26.130 in biology and Markov chains.
- $590\ 00:24:26.130 --> 00:24:28.170$ And a lot of this project has been attempting
- $591~00{:}24{:}28.170 \dashrightarrow 00{:}24{:}31.320$ to take this experience working with edge flows in,
- $592\ 00{:}24{:}31.320 \dashrightarrow 00{:}24{:}34.140$ for example, say, non-equilibrium thermodynamics,
- 593 00:24:34.140 --> 00:24:35.940 or looking at pairwise preference data,

- 594 00:24:35.940 --> 00:24:37.830 and looking at a different application area
- $595\ 00:24:37.830 \longrightarrow 00:24:39.630$ here to neuroscience.
- 596 00:24:39.630 --> 00:24:41.580 Really, you can you think about the edge flow,
- 597 00:24:41.580 --> 00:24:43.170 or relevant edge flow in neuroscience,
- $598\ 00:24:43.170 --> 00:24:45.780$ you might be asking about asymmetries in wiring patterns,
- $599\ 00:24:45.780 \longrightarrow 00:24:48.840$ or differences in directed influence or causality,
- $600\ 00:24:48.840 \longrightarrow 00:24:50.070$ or, really, you can think about
- $601\ 00:24:50.070 \longrightarrow 00:24:51.270$ these transfer entropy quantities.
- $602\ 00{:}24{:}51.270 \dashrightarrow 00{:}24{:}53.010$ This is why I was excited about transfer entropy.
- $603\ 00:24:53.010 \longrightarrow 00:24:55.770$ Transfer entropy is inherently directed notion
- 60400:24:55.770 --> 00:24:59.070 of information flow, so it's natural to think that
- $605\ 00{:}24{:}59.070 \dashrightarrow 00{:}25{:}01.380$ if you can calculate things like the transfer entropy,
- $606~00{:}25{:}01.380 \dashrightarrow 00{:}25{:}03.540$ then really, what you're studying is some sort of edge flow
- $607\ 00:25:03.540 \longrightarrow 00:25:04.373$ on a graph.
- $608\ 00{:}25{:}05.820$ --> $00{:}25{:}10.200$ Edge flows often are subject to the same common questions.
- $609~00{:}25{:}10.200$ --> $00{:}25{:}12.150$ So if I want to analyze the structure of an edge flow,
- $610\ 00:25:12.150 \longrightarrow 00:25:13.770$ there's some really big global questions
- $611\ 00:25:13.770 \longrightarrow 00:25:15.120$ that I would often ask,
- $612\ 00:25:15.120 --> 00:25:17.920$ that get asked in all these different application areas.
- 613 00:25:19.140 --> 00:25:20.340 One common question is,
- $614\ 00{:}25{:}20.340 {\: -->\:} 00{:}25{:}22.710$ well, does the flow originate somewhere and end somewhere?
- $615\ 00:25:22.710 \longrightarrow 00:25:25.020$ Are there sources and sinks in the graph?
- 616 00:25:25.020 --> 00:25:26.067 Another is, does it circulate?
- $617\ 00:25:26.067 --> 00:25:29.073$ And if it does circulate, on what scales, and where?

- $618\ 00:25:30.720 \longrightarrow 00:25:32.520$ If you have a network that's connected
- 619 00:25:32.520 --> 00:25:34.890 to a whole exterior network, for example,
- 620 00:25:34.890 --> 00:25:36.540 if you're looking at some small subsystem
- 621 00:25:36.540 --> 00:25:38.310 that's embedded in a much larger system,
- $622\ 00:25:38.310 --> 00:25:40.710$ as is almost always the case in neuroscience,
- $623\ 00:25:40.710 \longrightarrow 00:25:42.000$ then you also need to think about
- $624\ 00:25:42.000 \longrightarrow 00:25:43.290$ what passes through the network.
- $625\ 00:25:43.290 \longrightarrow 00:25:44.970$ So, is there a flow or current
- $626\ 00:25:44.970 \longrightarrow 00:25:46.647$ that moves through the boundary of the network,
- $627\ 00:25:46.647 \longrightarrow 00:25:50.070$ and is there information that flows through
- 628 00:25:50.070 --> 00:25:52.230 the network that you're studying?
- $629\ 00:25:52.230 \longrightarrow 00:25:54.660$ And in particular, if we have these different types of flow,
- $630\ 00:25:54.660 --> 00:25:56.640$ if flow can originate in source and end in sinks,
- 631 00:25:56.640 --> 00:25:59.040 if it can circulate, if it can pass through,
- $632\ 00{:}25{:}59.040 \dashrightarrow 00{:}26{:}02.550$ can we decompose the flow into pieces that do each of these
- 633 00:26:02.550 --> 00:26:04.983 and ask how much of the flow does 1, 2, or 3?
- $634\ 00:26:06.810 \longrightarrow 00:26:09.333$ Those questions lead to a decomposition.
- $635~00{:}26{:}10.590 \dashrightarrow 00{:}26{:}13.470$ So here, we're going to start with a simple idea.
- $636\ 00:26:13.470 \longrightarrow 00:26:14.940$ We're going to decompose an edge flow
- $637\ 00:26:14.940 \longrightarrow 00:26:17.430$ by projecting it onto orthogonal subspaces
- $638\ 00:26:17.430 \longrightarrow 00:26:20.040$ associated with some graph operators.
- $639~00{:}26{:}20.040 \dashrightarrow 00{:}26{:}23.023$ Generically, if we consider two linear operators,
- $640~00{:}26{:}23.023 \dashrightarrow 00{:}26{:}26.760$ A and B, where the product A times B equals zero,
- 641 00:26:26.760 --> 00:26:29.160 then the range of B must be contained
- $642\ 00:26:29.160 \longrightarrow 00:26:31.350$ in the null space of A,
- $643\ 00:26:31.350 \longrightarrow 00:26:33.420$ which means that I can express
- 644 00:26:33.420 --> 00:26:34.950 essentially any set of real numbers,

- $645\ 00:26:34.950 \longrightarrow 00:26:36.330$ so you can think of this as being
- $646\ 00:26:36.330 \longrightarrow 00:26:39.360$ the vector space of possible edge flows,
- 647 00:26:39.360 --> 00:26:42.690 as a direct sum of the range of B,
- 648 00:26:42.690 --> 00:26:44.730 the range of A transpose,
- $649\ 00{:}26{:}44.730 \dashrightarrow 00{:}26{:}47.007$ and the intersection of the null space of B transpose
- $650\ 00:26:47.007 \longrightarrow 00:26:48.420$ and the null space of A.
- $651\ 00{:}26{:}48.420 \dashrightarrow 00{:}26{:}52.680$ This blue subspace, this is called the harmonic space,
- $652\ 00:26:52.680 \longrightarrow 00:26:57.680$ and this is trivial in many applications
- 653 00:26:57.810 --> 00:26:59.790 if you choose A and B correctly.
- 654 00:26:59.790 --> 00:27:02.220 So there's often settings where you can pick A and B
- $655\ 00:27:02.220$ --> 00:27:05.700 so that these two null spaces have no intersection,
- $656\ 00:27:05.700 \longrightarrow 00:27:07.860$ and then this decomposition boils down
- 657 00:27:07.860 --> 00:27:12.860 to just separating a vector space into the range of B
- $658\ 00:27:12.900 \longrightarrow 00:27:14.373$ and the range of A transpose.
- $659\ 00:27:15.780 \longrightarrow 00:27:17.820$ In the graph setting, our goal is essentially
- $660\ 00{:}27{:}17.820 {\:{\circ}{\circ}{\circ}}>00{:}27{:}20.430$ to pick these operators to be meaningful things,
- 661 00:27:20.430 --> 00:27:21.900 that is, to pick graph operators
- 662 00:27:21.900 --> 00:27:25.890 so that these subspaces carry a meaningful,
- $663\ 00:27:25.890 \longrightarrow 00:27:29.700$ or carry meaning in the structural context.
- $664\ 00:27:29.700 --> 00:27:33.480$ So let's think a little bit about graph operators here.
- $665\ 00:27:33.480$ --> 00:27:35.490 So, let's look at two different classes of operators.
- $666\ 00:27:35.490 \longrightarrow 00:27:40.350$ So we can consider matrices that have E rows and n columns,
- 667 00:27:40.350 --> 00:27:43.410 or matrices that have I rows and E columns,
- $668~00{:}27{:}43.410 \dashrightarrow 00{:}27{:}46.010$ where again, E is the number of edges in this graph.

- 669 00:27:47.790 --> 00:27:50.190 If I have a matrix with E rows,
- $670\ 00:27:50.190 --> 00:27:53.370$ then each column with a matrix has as many entries
- $671\ 00:27:53.370 \longrightarrow 00:27:54.960$ as there are edges in the graph,
- $672\ 00:27:54.960 \longrightarrow 00:27:57.420$ so it can be thought of as itself an edge flow.
- 673 00:27:57.420 --> 00:27:58.530 So you can think that this matrix
- $674\ 00:27:58.530 \longrightarrow 00:28:00.120$ is composed of a set of columns,
- $675~00{:}28{:}00.120 \dashrightarrow 00{:}28{:}03.150$ where each column is some particular motivic flow,
- 676 00:28:03.150 --> 00:28:04.173 or flow motif.
- $677\ 00:28:05.430 \longrightarrow 00:28:09.450$ In contrast, if I look at a matrix where I have E columns,
- 678 00:28:09.450 --> 00:28:11.430 then each row of the matrix is a flow motif,
- $679\ 00:28:11.430 \longrightarrow 00:28:15.900$ so products against M evaluate inner products
- $680\ 00:28:15.900 \longrightarrow 00:28:18.360$ against specific flow motifs.
- 681 00:28:18.360 --> 00:28:19.620 That means in this context,
- 682 00:28:19.620 --> 00:28:21.090 if I look at the range of this matrix,
- $683\ 00:28:21.090 \longrightarrow 00:28:22.710$ this is really a linear combination
- 684 00:28:22.710 --> 00:28:25.230 of a specific subset of flow motifs,
- $685\ 00:28:25.230 \longrightarrow 00:28:26.340$ and in this context,
- 686 00:28:26.340 --> 00:28:27.780 if I look at the null space of the matrix,
- 687 00:28:27.780 --> 00:28:30.030 I'm looking at all edge flows orthogonal
- $688\ 00:28:30.030 \longrightarrow 00:28:32.040$ to that set of flow motifs.
- $689~00:28:32.040 \longrightarrow 00:28:36.240$ So here, if I look at the range of a matrix with E rows,
- $690\ 00:28:36.240 \longrightarrow 00:28:38.730$ that subspace is essentially modeling behavior
- $691\ 00:28:38.730 \longrightarrow 00:28:41.670$ similar to the motifs, so if I pick a set of motifs
- 692 00:28:41.670 --> 00:28:45.180 that flow out of a node, or flow into a node,
- $693~00{:}28{:}45.180 \dashrightarrow 00{:}28{:}48.180$ then this range is going to be a subspace of edge flows
- $694~00{:}28{:}48.180 \dashrightarrow 00{:}28{:}51.330$ that tend to originate in sources and end in sinks.
- $695\ 00:28:51.330 \longrightarrow 00:28:53.790$ In contrast, here, the null space of M,

 $696\ 00:28:53.790 \longrightarrow 00:28:56.910$ that's all edge flows orthogonal to the flow motifs,

 $697\ 00:28:56.910 --> 00:28:59.010$ so it models behavior distinct from the motifs.

 $698~00{:}28{:}59.010 \dashrightarrow 00{:}29{:}02.490$ Essentially, this space asks what doesn't the flow do,

 $699\ 00{:}29{:}02.490 \dashrightarrow 00{:}29{:}04.803$ whereas this space asks what does the flow do.

700 00:29:06.540 --> 00:29:09.180 Here is a simple, very classical example.

 $701\ 00:29:09.180 \longrightarrow 00:29:11.040$ And this goes all the way back to, you can think,

702 00:29:11.040 --> 00:29:13.710 like Kirchhoff electric circuit theory.

 $703\ 00:29:13.710 \longrightarrow 00:29:15.180$ We can define two operators.

704 00:29:15.180 --> 00:29:17.850 Here, G, this is essentially a gradient operator.

 $705~00:29:17.850 \longrightarrow 00:29:20.430$ And if you've taken some graph theory, you might know this

706 00:29:20.430 --> 00:29:22.320 as the edge incidence matrix.

707 00:29:22.320 --> 00:29:24.930 This is the matrix which essentially records

 $708\ 00:29:24.930 \longrightarrow 00:29:26.400$ the endpoints of an edge,

 $709\ 00:29:26.400 \longrightarrow 00:29:29.100$ and evaluates differences across it.

710 00:29:29.100 --> 00:29:32.760 So for example, if I look at this first row of G,

711 00:29:32.760 --> 00:29:35.340 this corresponds to edge I in the graph,

 $712\ 00:29:35.340 \dashrightarrow 00:29:38.670$ and if I had a function defined on the nodes in the graph,

713 00:29:38.670 --> 00:29:42.780 products with G would evaluate differences across this edge.

714 00:29:42.780 --> 00:29:44.340 If you look at its columns,

715 00:29:44.340 --> 00:29:45.930 each column here is a flow motif.

716 00:29:45.930 --> 00:29:48.900 So for example, this highlighted second column,

 $717\ 00:29:48.900 \longrightarrow 00:29:51.510$ this is entries 1, -1, 0, -1,

718 00:29:51.510 --> 00:29:53.070 if you carry those back to the edges,

719 00:29:53.070 --> 00:29:56.100 that corresponds to this specific flow motif.

720 00:29:56.100 --> 00:29:58.400 So here, this gradient, it's adjoint,

- 721 00:29:58.400 --> 00:30:00.300 so essentially a divergence operator,
- 722 00:30:00.300 --> 00:30:03.300 which means that the flow motifs are unit in flows
- 723 00:30:03.300 --> 00:30:05.190 or unit out flows for specific nodes,
- $724\ 00:30:05.190 \longrightarrow 00:30:07.170$ like what's shown here.
- $725\ 00:30:07.170 \longrightarrow 00:30:09.540$ You can also introduce something like a curl operator.
- $726\ 00:30:09.540 \longrightarrow 00:30:13.200$ The curl operator evaluates path sums around loops.
- 727 00:30:13.200 --> 00:30:16.170 So this row here, for example, this is a flow motif
- 728 00:30:16.170 --> 00:30:20.430 corresponding to the loop labeled A in this graph.
- 729 00:30:20.430 --> 00:30:22.050 You could certainly imagine other operators
- $730\ 00:30:22.050 \longrightarrow 00:30:23.400$ build other motifs.
- $731\ 00:30:23.400 \longrightarrow 00:30:25.020$ These operators are particularly nice,
- $732\ 00:30:25.020 \longrightarrow 00:30:27.070$ because they define principled subspaces.
- 733 00:30:28.200 --> 00:30:30.990 So if we apply that generic decomposition,
- $734\ 00:30:30.990 \longrightarrow 00:30:34.140$ then we could say that the space of possible edge flows, RE,
- $735\ 00:30:34.140 --> 00:30:37.410$ can be decomposed into the range of the gradient operator,
- $736\ 00:30:37.410 \longrightarrow 00:30:39.480$ the range of the curl transpose,
- 737 00:30:39.480 --> 00:30:41.640 and the intersection of their null spaces,
- $738\ 00:30:41.640 \longrightarrow 00:30:43.770$ into this harmonic space.
- 739 00:30:43.770 --> 00:30:45.810 This is nice, because the range of the gradient,
- 740 00:30:45.810 --> 00:30:47.730 that's flows that start and end somewhere,
- $741\ 00:30:47.730 --> 00:30:49.350$ those are flows that are associated
- $742\ 00:30:49.350 \longrightarrow 00:30:51.990$ with motion (indistinct) potential.
- 743 00:30:51.990 --> 00:30:53.220 So these, if you're thinking physics,
- 744 00:30:53.220 --> 00:30:54.630 you might say that these are conservative,
- $745\ 00:30:54.630 --> 00:30:56.520$ these are flows generated by voltage
- $746\ 00:30:56.520 \longrightarrow 00:30:58.680$ if you're looking at an electric circuit.

 $747\ 00:30:58.680 \longrightarrow 00:31:01.410$ These cyclic flows, while these are the flows and range

 $748\ 00:31:01.410 \longrightarrow 00:31:03.840$ of the curl transpose, and then this harmonic space,

 $749\ 00:31:03.840 \dashrightarrow 00:31:06.360$ those are flows that enter and leave the network

 $750\ 00:31:06.360 \longrightarrow 00:31:09.960$ without either starting or ending at a sink or a source,

751 00:31:09.960 --> 00:31:11.040 or circulating.

 $752\ 00:31:11.040 \longrightarrow 00:31:11.940$ So you can think that really,

753 00:31:11.940 --> 00:31:14.460 this decomposes the space of edge flows

 $754\ 00:31:14.460 \longrightarrow 00:31:17.220$ into flows that start and end somewhere inside the network,

755 00:31:17.220 --> 00:31:19.110 flows that circulate within the network,

756 00:31:19.110 --> 00:31:20.310 and flows that do neither,

 $757\ 00:31:20.310 \longrightarrow 00:31:22.470$ i.e. flows that enter and leave the network.

 $758\ 00{:}31{:}22.470 \dashrightarrow 00{:}31{:}25.140$ So this accomplishes that initial decomposition

 $759\ 00:31:25.140 \longrightarrow 00:31:26.390$ I'd set out at the start.

760 00:31:28.110 --> 00:31:29.400 Once we have this decomposition,

761 00:31:29.400 --> 00:31:32.580 then we can evaluate the sizes of the components

762 00:31:32.580 --> 00:31:36.300 of the decomposition to measure how much of the flow

 $763\ 00:31:36.300 \longrightarrow 00:31:39.300$ starts and ends somewhere, how much circulates, and so on.

764 00:31:39.300 --> 00:31:41.370 So, we can introduce these generic measures,

 $765\ 00:31:41.370 \longrightarrow 00:31:43.023$ where given some operator M,

 $766\ 00:31:44.100 --> 00:31:45.960$ we decompose the space of edge flows

767 00:31:45.960 --> 00:31:49.020 into the range of M and the null space of M transpose,

 $768\ 00{:}31{:}49.020 \dashrightarrow 00{:}31{:}52.050$ which means we can project f onto these subspaces,

769 00:31:52.050 --> 00:31:54.570 and then evaluate the sizes of these components,

770 00:31:54.570 --> 00:31:57.570 and that's a way of measuring how much of the flow

771 $00:31:57.570 \longrightarrow 00:32:00.630$ behaves like the flow motifs contained in this operator,

 $772\ 00:32:00.630 \longrightarrow 00:32:01.680$ and how much doesn't.

773 $00:32:04.080 \longrightarrow 00:32:04.920$ So, yeah.

774 00:32:04.920 --> 00:32:06.690 So that lets us answer this question,

 $775\ 00:32:06.690 --> 00:32:09.150$ and this is the tool that we're going to be using

 $776\ 00:32:09.150 \longrightarrow 00:32:10.893$ as our measurable.

777 00:32:12.270 --> 00:32:15.510 Now, that's totally easy to do,

778 $00:32:15.510 \longrightarrow 00:32:17.240$ if you're given a fixed edge flow and a fixed graph.

 $779\ 00:32:17.240 \longrightarrow 00:32:19.380$ If you have a fixed graph, you can build your operators,

 $780\ 00:32:19.380 \longrightarrow 00:32:21.630$ you choose the motifs, you have fixed edge flow,

 $781\ 00{:}32{:}21.630 \dashrightarrow 00{:}32{:}24.030$ you just project the edge flow onto the subspaces,

 $782\ 00:32:24.030 --> 00:32:26.910$ span by those operators, and you're done.

 $783\ 00:32:26.910 \longrightarrow 00:32:29.730$ However, there are many cases where

 $784\ 00{:}32{:}29.730 \dashrightarrow 00{:}32{:}32.850$ it's worth thinking about a distribution of edge flows,

 $785\ 00:32:32.850 \longrightarrow 00:32:35.913$ and then expected structures given that distribution.

 $786\ 00:32:36.780 \longrightarrow 00:32:39.120$ So here, we're going to be considering random edge flows,

 $787\ 00:32:39.120 --> 00:32:40.740$ for example, an edge flow of capital F.

788 00:32:40.740 --> 00:32:43.350 Here, I'm using capital letters to denote random quantities

 $789\ 00:32:43.350 \longrightarrow 00:32:44.850$ sampled from an edge flow distribution.

 $790\ 00:32:44.850$ --> 00:32:47.268 So this is the distribution of possible edge flows.

791 00:32:47.268 --> 00:32:48.360 And this is worth thinking about

 $792\ 00:32:48.360 --> 00:32:51.480$ because many generative models are stochastic.

793 00:32:51.480 --> 00:32:52.980 They may involve some random seed,

 $794\ 00:32:52.980 \longrightarrow 00:32:54.870$ or they may, for example, like that neural model,

 $795\ 00:32:54.870 \longrightarrow 00:32:57.780$ or a lot of these sort of neural models, be chaotic,

 $796\ 00:32:57.780 \longrightarrow 00:33:01.050$ so even if they are deterministic generative models,

797 00:33:01.050 --> 00:33:03.270 the output data behaves as though it's been sampled

 $798\ 00:33:03.270 \longrightarrow 00:33:04.270$ from a distribution.

799 00:33:05.430 --> 00:33:07.020 On the empirical side, for example,

800 00:33:07.020 --> 00:33:09.030 when we're estimating transfer entropy,

 $801\ 00:33:09.030 --> 00:33:11.070$ or estimating some information flow,

 $802\ 00:33:11.070 --> 00:33:13.380$ then there's always some degree of measurement error,

 $803\ 00:33:13.380 \longrightarrow 00:33:15.420$ or uncertainty in the estimate,

 $804\ 00:33:15.420$ --> 00:33:17.520 which really means that from a Bayesian perspective,

 $805\ 00:33:17.520 \longrightarrow 00:33:19.720$ we should be thinking that our estimator

 $806\ 00{:}33{:}20.580 {\:{\mbox{--}}\!>}\ 00{:}33{:}23.580$ is a point estimate drawn from some posterior distribution

 $807\ 00:33:23.580$ --> 00:33:25.260 of edge flows, and that we're back in the setting where,

 $808\ 00:33:25.260 \longrightarrow 00:33:27.780$ again, we need to talk about a distribution.

 $809\ 00:33:27.780 \longrightarrow 00:33:30.720$ Lastly, this random edge flow setting is also

 $810\ 00{:}33{:}30.720 --> 00{:}33{:}33.723$ really important if we want to compare the null hypotheses.

811 00:33:34.740 --> 00:33:36.990 Because often, if you want to compare

812 00:33:36.990 --> 00:33:38.370 to some sort of null hypothesis,

 $813\ 00:33:38.370 \longrightarrow 00:33:40.920$ it's helpful to have an ensemble of edge flows

 $814\ 00:33:40.920 \longrightarrow 00:33:42.540$ to compare against,

- $815\ 00:33:42.540 --> 00:33:44.370$ which means that we would like to be able to talk about
- $816\ 00{:}33{:}44.370 \dashrightarrow 00{:}33{:}47.763$ expected structure under varying distributional assumptions.
- $817\ 00:33:49.650 \longrightarrow 00:33:54.210$ If we can talk meaningfully about random edge flows,
- 818 00:33:54.210 --> 00:33:56.100 then really what we can start doing
- $819\ 00:33:56.100 \longrightarrow 00:33:58.920$ is we can start bridging the expected structure
- $820\ 00:33:58.920 \longrightarrow 00:34:00.240$ back to the distribution.
- 821 00:34:00.240 --> 00:34:01.290 So what we're looking for
- 822 00:34:01.290 --> 00:34:04.620 is a way of explaining generic expectations
- $823\ 00:34:04.620 \longrightarrow 00:34:06.990$ of what the structure will look like
- $824\ 00:34:06.990 \longrightarrow 00:34:09.690$ as we vary this distribution of edge flows.
- $825~00{:}34{:}09.690 \dashrightarrow 00{:}34{:}12.720$ You could think that a particular dynamical system
- $826\ 00:34:12.720$ --> 00:34:17.720 generates a wiring pattern, that generates firing dynamics,
- 827 00:34:19.260 --> 00:34:20.730 those firing dynamics determine
- 828 00:34:20.730 --> 00:34:23.190 some sort of information flow graph,
- $829\ 00:34:23.190 \longrightarrow 00:34:24.690$ and then that information flow graph
- $830\ 00:34:24.690 \longrightarrow 00:34:27.750$ is really a sample from that generative model,
- $831\ 00:34:27.750 \longrightarrow 00:34:30.480$ and we would like to be able to talk about
- $832\ 00:34:30.480 \longrightarrow 00:34:31.680$ what would we expect
- $833\ 00:34:31.680 \longrightarrow 00:34:33.840$ if we knew the distribution of edge flows
- $834\ 00:34:33.840 \longrightarrow 00:34:35.310$ about the global structure.
- $835\ 00:34:35.310 --> 00:34:36.960$ That is, we'd like to bridge global structure
- $836\ 00:34:36.960 \longrightarrow 00:34:38.670$ back to this distribution.
- 837 00:34:38.670 --> 00:34:40.950 And then, ideally, you'd bridge that distribution
- 838 00:34:40.950 --> 00:34:42.390 back to the generative mechanism.
- 839 $00:34:42.390 \longrightarrow 00:34:44.670$ And this is a project for future work.
- 840 00:34:44.670 --> 00:34:46.650 Obviously, this is fairly ambitious.

- 841 00:34:46.650 --> 00:34:49.150 However, this first point is something you can do
- 842 00:34:50.610 --> 00:34:53.040 really in fairly explicit detail,
- $843\ 00:34:53.040 \longrightarrow 00:34:54.180$ and that's what I would like to spell out
- $844\ 00:34:54.180 \longrightarrow 00:34:55.290$ with the end of this talk,
- $845\ 00:34:55.290 --> 00:34:58.080$ is how do you bridge global structure
- $846\ 00:34:58.080 \longrightarrow 00:34:59.943$ back to a distribution of edge flows.
- $847\ 00:35:02.220 \longrightarrow 00:35:03.480$ So yeah.
- $848\ 00:35:03.480 \longrightarrow 00:35:04.500$ So that's our main question.
- $849\ 00:35:04.500 --> 00:35:06.210$ How does the choice of distribution
- $850\ 00:35:06.210 \longrightarrow 00:35:08.553$ influence the expected global flow structure?
- $851\ 00:35:12.000 \longrightarrow 00:35:14.790$ So first, let's start with a lemma.
- $852\ 00{:}35{:}14.790 \dashrightarrow 00{:}35{:}17.010$ Suppose that we have a distribution of edge flows
- $853\ 00:35:17.010 \longrightarrow 00:35:19.920$ with some expectation f bar, and some covariance,
- $854\ 00:35:19.920 \dashrightarrow 00:35:23.640$ here I'm using double bar V to denote covariance.
- 855 00:35:23.640 --> 00:35:26.710 We'll let S contained in the set of...
- $856\ 00:35:26.710 --> 00:35:29.340\ S$ will be a subspace contained within
- $857\ 00:35:29.340 \longrightarrow 00:35:31.110$ the vector space of edge flows,
- $858~00{:}35{:}31.110 \dashrightarrow 00{:}35{:}35.100$ and we'll let PS be the orthogonal projector onto S.
- $859\ 00:35:35.100 \longrightarrow 00:35:40.100$ Then FS, that's the projection of F onto this subspace S,
- $860\ 00:35:40.140 --> 00:35:42.900$ the expectation of its norm squared
- 861 00:35:42.900 --> 00:35:47.900 is the norm of the expected flow projected onto S squared,
- $862\ 00{:}35{:}48.390 \dashrightarrow 00{:}35{:}51.760$ so this is essentially the expectation of the sample
- $863\ 00:35:52.680 \longrightarrow 00:35:55.800$ is the measure evaluated with the expected sample.
- $864~00{:}35{:}55{.}800 \dashrightarrow 00{:}35{:}58.140$ And then plus a term that involves an inner product

- $865\ 00:35:58.140 --> 00:36:00.240$ between the projector on the subspace
- $866\ 00:36:00.240 \longrightarrow 00:36:02.160$ and the covariance matrix for the edge flows.
- 867 00:36:02.160 --> 00:36:03.960 Here, this denotes the matrix inner product,
- $868\ 00:36:03.960 \longrightarrow 00:36:06.993$ so is just the sum over all ij entries.
- $869\ 00:36:09.030 \longrightarrow 00:36:10.470$ What's nice about this formula is,
- 870 00:36:10.470 --> 00:36:12.780 at least in terms of expectation,
- $871\ 00:36:12.780 --> 00:36:17.010$ it reduces this study of the bridge
- 872 00:36:17.010 --> 00:36:19.890 between distribution and network structure
- 873 00:36:19.890 --> 00:36:21.660 to a study of moments, right?
- 874 00:36:21.660 --> 00:36:23.520 Because we've replaced a distributional problem here
- $875\ 00:36:23.520 \longrightarrow 00:36:26.730$ with a linear algebra problem
- 876 00:36:26.730 --> 00:36:28.740 that's posed in terms of this projector,
- $877\ 00:36:28.740 \longrightarrow 00:36:30.570$ the projector out of the subspace S,
- $878\ 00:36:30.570 \longrightarrow 00:36:33.360$ which is determined by the topology of the network.
- 879 00:36:33.360 --> 00:36:35.760 And the variance in that edge flow,
- $880\ 00:36:35.760 --> 00:36:38.010$ which is determined by your generative model.
- 881 00:36:39.660 --> 00:36:42.150 Well, you might say, "Okay, well, fine,
- 882 $00:36:42.150 \longrightarrow 00:36:43.920$ this is a matrix inner product, we can just stop here.
- 883 00:36:43.920 --> 00:36:45.000 We could compute this projector.
- $884\ 00:36:45.000 --> 00:36:47.027$ We could sample a whole bunch of edge flows
- $885\ 00:36:47.027 \longrightarrow 00:36:48.068$ to compute this covariance.
- 886 00:36:48.068 --> 00:36:50.040 So you can do this matrix inner product."
- 887 $00:36:50.040 \longrightarrow 00:36:53.580$ But I'm sort of greedy, because I suspect
- $888\ 00{:}36{:}53.580 \dashrightarrow 00{:}36{:}57.480$ that you can really do more with this inner product.
- 889 00:36:57.480 --> 00:36:59.500 So I'd like to highlight some challenges
- $890\ 00:37:00.360 \longrightarrow 00:37:02.760$ associated with this inner product.
- 891 00:37:02.760 --> 00:37:05.670 So first, let's say I asked you to design a distribution

- $892~00:37:05.670 \dashrightarrow 00:37:07.350$ with tuneable global structure.
- 893 00:37:07.350 --> 00:37:09.063 So for example, I said I want you to
- 894 00:37:09.063 --> 00:37:10.170 pick a generative model,
- $895\ 00:37:10.170 \longrightarrow 00:37:12.060$ or design a distribution of edge flows,
- 896 00:37:12.060 --> 00:37:14.040 that when I sample edge flows from it,
- $897\ 00:37:14.040 \longrightarrow 00:37:18.360$ their expected structures match some expectation.
- $898\ 00:37:18.360 --> 00:37:20.910$ It's not obvious how to do that given this formula.
- $899\ 00:37:21.750 \longrightarrow 00:37:24.150$ It's not obvious in particular, because these projectors,
- 900 00:37:24.150 --> 00:37:26.160 like the projector onto subspace S,
- 901 00:37:26.160 --> 00:37:28.590 typically depend in fairly non-trivial ways
- $902\ 00:37:28.590 \longrightarrow 00:37:29.910$ on the graph topology.
- $903\ 00:37:29.910 --> 00:37:31.650$ So small changes in the graph topology
- 904 00:37:31.650 --> 00:37:34.350 can completely change this projector.
- 905 00:37:34.350 --> 00:37:37.350 In essence, it's hard to isolate topology from distribution.
- 906 00:37:37.350 --> 00:37:38.790 You could think that this inner product,
- 907 00:37:38.790 --> 00:37:41.313 if I think about it in terms of the ij entries,
- $908\ 00:37:43.110 --> 00:37:46.560$ while easy to compute, is not easy to interpret,
- 909 00:37:46.560 --> 00:37:49.470 because i and j are somewhat arbitrary indexing.
- 910 00:37:49.470 \rightarrow 00:37:51.330 And obviously, really, the topology of the graph,
- 911 00:37:51.330 --> 00:37:53.160 it's not encoded in the indexing,
- $912\ 00:37:53.160 \longrightarrow 00:37:56.160$ it's encoded in the structure of these matrices.
- $913\ 00:37:56.160 \longrightarrow 00:37:57.420$ So in some ways, what we really need
- 914 00:37:57.420 --> 00:38:00.003 is a better basis for computing this inner product.
- 915 00:38:01.320 --> 00:38:03.090 In addition, computing this inner product
- 916 00:38:03.090 --> 00:38:05.280 just may not be empirically feasible,
- $917\ 00:38:05.280 \longrightarrow 00:38:06.510$ because it might not be feasible

- $918\ 00:38:06.510 \longrightarrow 00:38:07.860$ to estimate all these covariances.
- $919\ 00:38:07.860 \longrightarrow 00:38:09.240$ There's lots of settings where,
- 920 00:38:09.240 --> 00:38:10.740 if you have a random edge flow,
- 921 00:38:10.740 --> 00:38:12.900 it becomes very expensive to try to estimate
- 922 00:38:12.900 --> 00:38:14.850 all the covariances in this graph, or sorry,
- 923 00:38:14.850 --> 00:38:18.570 in this matrix, because this matrix has as many entries
- $924\ 00:38:18.570 \longrightarrow 00:38:20.793$ as there are pairs of edges in the graph.
- $925~00:38:22.110 \longrightarrow 00:38:25.650$ And typically, that number of edges grows fairly quickly
- $926\ 00:38:25.650 \longrightarrow 00:38:27.300$ in the number of nodes in the graph.
- 927 00:38:27.300 --> 00:38:30.630 So in the worst case, the size of these matrices
- $928\ 00:38:30.630 \longrightarrow 00:38:33.330$ goes not to the square of the number of nodes in the graph,
- 929 00:38:33.330 \rightarrow 00:38:34.950 but the number of nodes in the graph to the fourth,
- 930 00:38:34.950 --> 00:38:37.380 so this becomes very expensive very fast.
- 931 00:38:37.380 \rightarrow 00:38:40.590 Again, we could try to address this problem
- $932\ 00:38:40.590 \longrightarrow 00:38:43.410$ if we had a better basis for performing this inner product,
- $933\ 00:38:43.410 --> 00:38:45.780$ because we might hope to be able to truncate
- 934 00:38:45.780 --> 00:38:47.040 somewhere in that basis,
- $935\ 00{:}38{:}47.040 \dashrightarrow 00{:}38{:}49.190$ and use a lower dimensional representation.
- 936 $00:38:50.160 \longrightarrow 00:38:51.630$ So, to build there,
- 937 00:38:51.630 --> 00:38:54.930 I'm going to show you a particular family of covariances.
- $938~00{:}38{:}54.930 \dashrightarrow 00{:}38{:}58.230$ We're going to start with a very simple generative model.
- 939 00:38:58.230 --> 00:39:00.300 So let's suppose that each node of the graph
- 940 00:39:00.300 --> 00:39:01.860 is assigned some set of attributes,
- 941 00:39:01.860 --> 00:39:04.382 here, a random vector X, sampled from a...
- 942 00:39:04.382 --> 00:39:05.250 So you can think of trait space,
- 943 00:39:05.250 --> 00:39:07.080 a space of possible attributes.

- $944\ 00:39:07.080 \longrightarrow 00:39:08.970$ And these are sampled i.i.d.
- $945\ 00:39:08.970 --> 00:39:10.980$ In addition, we'll assume there exists
- 946 00:39:10.980 --> 00:39:12.930 an alternating function f,
- 947 00:39:12.930 --> 00:39:15.360 which accepts pairs of attributes,
- $948\ 00:39:15.360 \longrightarrow 00:39:17.130$ and returns a real number.
- 949 00:39:17.130 --> 00:39:20.070 So this is something that I can evaluate on the endpoints
- $950\ 00:39:20.070 \longrightarrow 00:39:22.683$ of an edge, and return an edge flow value.
- 951 00:39:24.420 \rightarrow 00:39:26.340 In this setting,
- $952\ 00:39:26.340 \dashrightarrow 00:39:29.160$ everything that I've shown you before simplifies.
- 953 00:39:29.160 --> 00:39:31.740 So if my edge flow F is drawn
- 954 00:39:31.740 --> 00:39:33.780 by first sampling a set of attributes,
- $955~00{:}39{:}33.780 \dashrightarrow 00{:}39{:}36.090$ and then plugging those attributes into functions
- $956\ 00:39:36.090 \longrightarrow 00:39:41.090$ on the edges, then the mean edge flow is zero,
- $957\ 00:39:41.880 \longrightarrow 00:39:43.800$ so that f bar goes away,
- $958\ 00:39:43.800 \longrightarrow 00:39:46.080$ and the covariance reduces to this form.
- $959\ 00:39:46.080 \longrightarrow 00:39:47.100$ So you get a standard form,
- $960\ 00:39:47.100 \longrightarrow 00:39:49.260$ where the covariance and the edge flow
- 961 00:39:49.260 --> 00:39:51.840 is a function of two scalar quantities,
- 962 00:39:51.840 --> 00:39:53.010 that's sigma squared and rho,
- 963 00:39:53.010 --> 00:39:56.400 these are both statistics associated with this function
- $964\ 00:39:56.400 \longrightarrow 00:39:59.220$ and the distribution of traits.
- $965\ 00:39:59.220$ --> 00:40:01.560 And then some matrices, so we have an identity matrix,
- $966~00{:}40{:}01.560 \dashrightarrow 00{:}40{:}04.620$ and we have this gradient matrix showing up again.
- $967\ 00:40:04.620 \longrightarrow 00:40:07.160$ This is really nice, because when you plug it back in,
- $968\ 00:40:07.160 \longrightarrow 00:40:08.400$ we try to compute, say,
- 969 00:40:08.400 --> 00:40:11.403 the expected sizes of the components,

- 970 00:40:12.510 --> 00:40:14.880 this matrix inner product
- 971 00:40:14.880 --> 00:40:16.920 that I was complaining about before,
- 972 00:40:16.920 --> 00:40:19.290 this whole matrix inner product simplifies.
- $973\ 00:40:19.290 \longrightarrow 00:40:21.060$ So when you have a variance
- 974 00:40:21.060 --> 00:40:23.400 that's in this nice, simple, canonical form,
- $975\ 00:40:23.400 --> 00:40:25.800$ then the expected overall size of the edge flow,
- $976\ 00:40:25.800 \longrightarrow 00:40:28.620$ that's just sigma squared, the expected size
- 977 00:40:28.620 --> 00:40:31.353 projected onto that conservative subspace,
- $978\ 00:40:32.250 \longrightarrow 00:40:34.830$ that breaks into this combination
- 979 00:40:34.830 --> 00:40:36.840 of the sigma squared and the rho,
- $980\ 00:40:36.840 \longrightarrow 00:40:38.940$ again, those are some simple statistics.
- 981 00:40:38.940 --> 00:40:42.360 And then V, E, L, and E, those are just
- $982\ 00:40:42.360 \longrightarrow 00:40:44.040$ essentially dimension counting on the network.
- $983~00{:}40{:}44.040 \dashrightarrow 00{:}46.860$ So this is the number of vertices, the number of edges,
- $984\ 00:40:46.860 \longrightarrow 00:40:48.480$ and the number of loops, the number of loops,
- $985\ 00:40:48.480 \longrightarrow 00:40:49.320$ that's the number of edges
- 986 00:40:49.320 --> 00:40:51.990 minus the number of vertices plus one.
- 987 00:40:51.990 --> 00:40:54.720 And similarly, the expected cyclic size,
- 988 00:40:54.720 --> 00:40:57.240 or size of the cyclic component, reduces to,
- 989 00:40:57.240 --> 00:41:00.660 again, this scalar factor in terms of the statistics,
- $990\ 00{:}41{:}00.660 {\:\hbox{--}}{>}\ 00{:}41{:}05.643$ and some dimension counting topology related quantities.
- 991 00:41:07.762 --> 00:41:08.790 So this is very nice,
- 992 00:41:08.790 --> 00:41:11.610 because this allows us to really separate
- 993 00:41:11.610 --> 00:41:14.280 the role of topology from the role of the generative model.
- 994 00:41:14.280 \rightarrow 00:41:16.980 The generative model determines sigma and rho,
- $995\ 00:41:16.980 \longrightarrow 00:41:19.323$ and topology determines these dimensions.
- 996 00:41:21.630 --> 00:41:24.280 It turns out that the same thing is true

- 997 00:41:25.560 --> 00:41:28.590 even if you don't sample the edge flow
- 998 00:41:28.590 --> 00:41:32.610 using this trait approach, but the graph is complete.
- 999 00:41:32.610 --> 00:41:34.380 So if your graph is complete,
- $1000\ 00:41:34.380 --> 00:41:36.630$ then no matter how you sample your edge flow,
- 1001 00:41:36.630 --> 00:41:38.280 for any edge flow distribution,
- $1002\ 00:41:38.280 \longrightarrow 00:41:40.350$ exactly the same formulas hold,
- $1003\ 00:41:40.350 --> 00:41:42.840$ you just replace those simple statistics
- $1004\ 00:41:42.840 --> 00:41:44.760$ with estimators for those statistics
- 1005 00:41:44.760 --> 00:41:46.770 given your sampled flow.
- 1006 00:41:46.770 --> 00:41:48.900 And this is sort of a striking result,
- 1007 00:41:48.900 --> 00:41:51.150 because this says that this conclusion
- $1008~00{:}41{:}51.150 \dashrightarrow 00{:}41{:}53.730$ that was linked to some specific generative model
- 1009 00:41:53.730 --> 00:41:55.740 with some very specific assumptions, right,
- $1010\ 00:41:55.740 \longrightarrow 00:41:57.330$ we assumed it was i.i.d.,
- 1011 00:41:57.330 --> 00:41:59.100 extends to all complete graphs,
- $1012\ 00:41:59.100 \longrightarrow 00:42:02.193$ regardless of the actual distribution that we sampled from.
- 1013 00:42:04.650 --> 00:42:05.790 Up until this point,
- $1014\ 00:42:05.790 \longrightarrow 00:42:07.790$ this is kind of just an algebra miracle.
- $1015~00{:}42{:}09.180$ --> $00{:}42{:}10.950$ And one of the things I'd like to do at the end of this talk
- 1016 00:42:10.950 --> 00:42:12.660 is explain why this is true,
- $1017\ 00:42:12.660 --> 00:42:14.823$ and show how to generalize these results.
- 1018 00:42:16.080 --> 00:42:16.950 So to build there,
- $1019\ 00{:}42{:}16.950 {\:{\mbox{--}}}{>}\ 00{:}42{:}19.050$ let's emphasize some of the advantages of this.
- 1020 00:42:19.050 --> 00:42:21.540 So first, the advantages of the model,
- $1021\ 00:42:21.540 \longrightarrow 00:42:23.970$ it's mechanistically plausible in certain settings,

- $1022\ 00:42:23.970 \longrightarrow 00:42:27.510$ it cleanly separated the role of topology and distribution,
- $1023\ 00:42:27.510 \longrightarrow 00:42:29.880$ and these coefficients that had to do with topology,
- $1024\ 00:42:29.880 \longrightarrow 00:42:30.960$ these are just dimensions,
- $1025\ 00:42:30.960 --> 00:42:33.510$ these are non negative quantities,
- $1026\ 00:42:33.510 \longrightarrow 00:42:36.030$ so it's easy to work out monotonic relationships
- $1027\ 00:42:36.030 --> 00:42:39.690$ between expected structure and simple statistics
- $1028\ 00:42:39.690 \longrightarrow 00:42:41.190$ of the edge flow distribution.
- $1029\ 00{:}42{:}43.770 \dashrightarrow 00{:}42{:}47.010$ The fact that you can do that enables more general analysis.
- 1030 00:42:47.010 --> 00:42:48.240 So I'm showing you on the right here,
- $1031\ 00:42:48.240 \longrightarrow 00:42:50.730$ this is from a different application area.
- $1032\ 00{:}42{:}50.730 \dashrightarrow 00{:}42{:}55.140$ This was an experiment where we trained a set of agents
- 1033 00:42:55.140 --> 00:42:57.600 to play a game using a genetic algorithm,
- $1034\ 00:42:57.600 \longrightarrow 00:42:59.970$ and then we looked at the expected sizes
- 1035 00:42:59.970 --> 00:43:02.400 of cyclic and acyclic components
- $1036\ 00:43:02.400 \longrightarrow 00:43:04.770$ in a tournament among those agents.
- 1037 00:43:04.770 --> 00:43:07.620 And you can actually predict these curves
- 1038 00:43:07.620 --> 00:43:09.780 using this type of structure analysis,
- $1039\ 00{:}43{:}09.780 \dashrightarrow 00{:}43{:}13.230$ because it was possible to predict the dynamics
- $1040\ 00{:}43{:}13.230 \dashrightarrow 00{:}43{:}16.713$ of these simple statistics, this sigma and this rho.
- $1041\ 00:43:17.730 \longrightarrow 00:43:19.980$ So this is a really powerful analytical tool,
- $1042\ 00:43:19.980 \longrightarrow 00:43:22.530$ but it is limited to this particular model.
- $1043\ 00{:}43{:}22.530 \dashrightarrow 00{:}43{:}25.590$ In particular, it only models unstructured cycles,
- 1044 00:43:25.590 --> 00:43:26.970 so if you look at the cyclic component
- $1045\ 00:43:26.970 \longrightarrow 00:43:28.350$ generated by this model,

- $1046\ 00:43:28.350 \longrightarrow 00:43:30.990$ it just looks like random noise that's been projected
- $1047\ 00:43:30.990 \longrightarrow 00:43:32.990$ onto the range of the current transpose.
- 1048 00:43:33.870 --> 00:43:36.120 It's limited to correlations on adjacent edges,
- $1049\ 00:43:36.120 \longrightarrow 00:43:37.890$ so we only generate correlations
- $1050\ 00{:}43{:}37.890 \to 00{:}43{:}39.960$ on edges that share an endpoint, because you could think
- $1051\ 00:43:39.960 \longrightarrow 00:43:41.850$ that all of the original random information
- $1052\ 00:43:41.850 \longrightarrow 00:43:43.233$ comes from the endpoints.
- $1053\ 00:43:44.490 --> 00:43:46.560$ And then, in some ways, it's not general enough.
- 1054 00:43:46.560 --> 00:43:48.060 So it lacks an expressivity.
- $1055\ 00{:}43{:}48.060 --> 00{:}43{:}50.970$ We can't parameterize all possible expected structures
- $1056\ 00:43:50.970 \longrightarrow 00:43:54.270$ by picking sigma and rho.
- 1057 00:43:54.270 --> 00:43:55.920 And we lack some notion of sufficiency,
- 1058 00:43:55.920 --> 00:43:58.410 i.e. if the graph is not complete,
- 1059 00:43:58.410 --> 00:44:00.840 then this nice algebraic property,
- $1060\ 00:44:00.840 \longrightarrow 00:44:02.970$ that it actually didn't matter what the distribution was,
- 1061 00:44:02.970 --> 00:44:04.470 this fails to hold.
- 1062 00:44:04.470 --> 00:44:06.060 So if the graph is not complete,
- $1063\ 00:44:06.060 --> 00:44:09.312$ then projection onto the family of covariances
- 1064 00:44:09.312 --> 00:44:11.430 parameterized in this fashion
- $1065\ 00:44:11.430 \longrightarrow 00:44:13.473$ changes the expected global structure.
- $1066\ 00:44:14.640 --> 00:44:16.980$ So we would like to address these limitations.
- 1067 00:44:16.980 --> 00:44:18.810 And so our goal for the next part of this talk
- $1068\ 00:44:18.810 \longrightarrow 00:44:21.240$ is to really generalize these results.
- 1069 00:44:21.240 --> 00:44:22.230 To generalize,
- $1070\ 00{:}44{:}22.230 \dashrightarrow 00{:}44{:}24.930$ we're going to switch our perspective a little bit.
- 1071 00:44:24.930 --> 00:44:27.420 So I'll recall this formula,
- $1072\ 00:44:27.420 \longrightarrow 00:44:29.730$ that if we generate our edge flow

- 1073 00:44:29.730 --> 00:44:31.650 by sampling quantities on the endpoints,
- $1074\ 00:44:31.650 \longrightarrow 00:44:34.110$ and then plugging them into functions on the edges,
- 1075 00:44:34.110 --> 00:44:35.297 then you necessarily get a covariance
- 1076 00:44:35.297 --> 00:44:37.320 that's in this two parameter family,
- 1077 00:44:37.320 --> 00:44:38.820 where I have two scalar quantities
- $1078\ 00:44:38.820 \longrightarrow 00:44:40.590$ associated with the statistics of the edge flow,
- $1079\ 00:44:40.590 --> 00:44:42.210$ that's this sigma and this rho,
- $1080\ 00:44:42.210 --> 00:44:43.440$ and then I have some matrices
- $1081\ 00:44:43.440$ --> 00:44:45.480 that are associated with the topology of the network
- 1082 00:44:45.480 --> 00:44:47.463 in the subspaces I'm projecting onto.
- $1083\ 00:44:48.480 --> 00:44:50.760$ These are related to a different way
- $1084\ 00:44:50.760 \longrightarrow 00:44:52.290$ of looking at the graph.
- 1085 00:44:52.290 --> 00:44:54.450 So I can start with my original graph,
- $1086\ 00:44:54.450 --> 00:44:56.760$ and then I can convert it to an edge graph,
- $1087\ 00:44:56.760 \longrightarrow 00:44:59.373$ where I have one node per edge in the graph,
- $1088\ 00:45:00.210$ --> 00:45:02.823 and nodes are connected if they share an endpoint.
- $1089\ 00{:}45{:}04.080 \dashrightarrow 00{:}45{:}07.320$ You can then assign essentially signs to these edges
- $1090\ 00:45:07.320 \longrightarrow 00:45:10.110$ based on whether the edge direction
- $1091\ 00{:}45{:}10.110 \dashrightarrow 00{:}45{:}13.710$ chosen in the original graph is consistent or inconsistent
- $1092\ 00:45:13.710 \longrightarrow 00:45:15.810$ at the node that links two edges.
- $1093\ 00{:}45{:}15.810 \dashrightarrow 00{:}45{:}19.890$ So for example, edges 1 and 2 both point in to this node,
- $1094\ 00:45:19.890 \longrightarrow 00:45:21.780$ so there's an edge linking 1 and 2
- $1095\ 00:45:21.780 \longrightarrow 00:45:24.540$ in the edge graph with a positive sign.
- $1096\ 00:45:24.540 \longrightarrow 00:45:25.470$ This essentially tells you
- $1097\ 00:45:25.470 --> 00:45:30.150$ that the influence of random information
- $1098\ 00:45:30.150 --> 00:45:33.240$ assigned on this node linking 1 and 2

- $1099\ 00{:}45{:}33.240 \dashrightarrow 00{:}45{:}36.210$ would positively correlate the sample edge flow
- $1100\ 00:45:36.210 \longrightarrow 00:45:37.323$ on edges 1 and 2.
- $1101\ 00:45:38.370 --> 00:45:42.990$ Then, this form, what this form for covariance matrices says
- $1102\ 00:45:42.990 --> 00:45:46.200$ is that we're looking at families of edge flows
- $1103\ 00:45:46.200 \longrightarrow 00:45:48.690$ that have correlations on edges sharing an endpoint,
- 1104 00:45:48.690 --> 00:45:51.150 so edges at distance one in this edge graph,
- $1105\ 00:45:51.150 \longrightarrow 00:45:52.290$ and non-adjacent edges
- $1106\ 00:45:52.290 \longrightarrow 00:45:54.240$ are entirely independent of each other.
- 1107 00:45:56.310 --> 00:45:57.143 Okay.
- $1108\ 00{:}45{:}58.230$ --> $00{:}46{:}00.330$ So that's essentially what the trait-performance model
- $1109\ 00:46:00.330 \longrightarrow 00:46:01.693$ is doing, is it's parameterizing
- 1110 00:46:01.693 --> 00:46:03.690 a family of covariance matrices,
- $1111\ 00{:}46{:}03.690 \dashrightarrow 00{:}46{:}05.910$ where we're modeling correlations at distance one,
- $1112\ 00:46:05.910 \longrightarrow 00:46:07.590$ but not further in the edge graph.
- $1113\ 00:46:07.590 \longrightarrow 00:46:08.820$ So then the natural thought
- 1114 00:46:08.820 --> 00:46:10.717 for how to generalize these results is to ask,
- $1115~00{:}46{:}10.717 \dashrightarrow 00{:}46{:}13.677$ "Can we model longer distance correlations to this graph?"
- 1116 00:46:15.000 --> 00:46:16.590 To do so, let's think a little bit
- 1117 00:46:16.590 --> 00:46:19.260 about what this matrix
- 1118 00:46:19.260 --> 00:46:20.970 that's showing up inside the covariances,
- $1119\ 00{:}46{:}20.970 \dashrightarrow 00{:}46{:}23.820$ so we have a gradient times a gradient transpose.
- $1120\ 00:46:23.820 \longrightarrow 00:46:27.903$ This is in effect a Laplacian for that edge graph.
- $1121\ 00:46:29.700 \longrightarrow 00:46:31.680$ And you can do this for other motifs.
- $1122\ 00{:}46{:}31.680 {\:{\mbox{--}}}{\:{\mbox{--}}}\ 00{:}46{:}34.710$ If you think about different motif constructions,

- $1123\ 00:46:34.710 \longrightarrow 00:46:38.400$ essentially if you take a product of M transpose times M,
- $1124\ 00{:}46{:}38.400 \dashrightarrow 00{:}46{:}41.070$ that will generate something that looks like a Laplacian
- 1125 00:46:41.070 --> 00:46:44.070 or an adjacency matrix for a graph
- $1126\ 00:46:44.070 --> 00:46:47.250$ where I'm assigning nodes to be motifs,
- $1127\ 00:46:47.250 \longrightarrow 00:46:50.190$ and looking at the overlap of motifs.
- 1128 00:46:50.190 --> 00:46:51.990 And if I look at M times M transpose,
- $1129\ 00{:}46{:}51.990 \dashrightarrow 00{:}46{:}54.840$ and I'm looking at the overlap of edges via shared motifs.
- $1130\ 00{:}46{:}54.840 \dashrightarrow 00{:}46{:}57.300$ So these operators you can think about as being Laplacians
- $1131\ 00:46:57.300 \longrightarrow 00:46:58.650$ for some sort of graph
- $1132\ 00{:}46{:}58.650 \dashrightarrow 00{:}47{:}01.413$ that's generated from the original graph motifs.
- $1133\ 00:47:03.630 \longrightarrow 00:47:06.450$ Like any adjacency matrix,
- $1134\ 00{:}47{:}06.450 \dashrightarrow 00{:}47{:}11.040$ powers of something like G, G transpose minus 2I,
- $1135\ 00:47:11.040 \longrightarrow 00:47:13.800$ that would model connections along longer paths,
- $1136\ 00:47:13.800 \longrightarrow 00:47:15.810$ along longer distances in these graphs
- $1137\ 00{:}47{:}15.810 \dashrightarrow 00{:}47{:}18.710$ associated with motifs, in this case, with the edge graph.
- 1138 00:47:19.620 --> 00:47:21.240 So our thought is, maybe, well,
- $1139\ 00:47:21.240 \longrightarrow 00:47:22.890$ we could extend this trait performance
- 1140 00:47:22.890 --> 00:47:24.630 family of covariance matrices
- $1141\ 00:47:24.630 \longrightarrow 00:47:26.610$ by instead of only looking at
- $1142\ 00{:}47{:}26.610 {\:{\mbox{--}}}{>}\ 00{:}47{:}30.750$ a linear combination of an identity matrix and this matrix,
- $1143\ 00:47:30.750 \longrightarrow 00:47:32.190$ we could look at a power series.
- $1144\ 00{:}47{:}32.190 \dashrightarrow 00{:}47{:}36.600$ So we could consider combining powers of this matrix.
- $1145\ 00{:}47{:}36.600 \dashrightarrow 00{:}47{:}39.390$ And this would generate this family of matrices

- $1146\ 00:47:39.390 \longrightarrow 00:47:40.800$ that are parameterized by some set of
- $1148\ 00:47:43.080 \longrightarrow 00:47:45.600\ I$ apologize, I just wanted to remind you
- $1149\ 00:47:45.600 \longrightarrow 00:47:48.240$ that we have a rather tight time limit,
- 1150 00:47:48.240 --> 00:47:50.250 approximately a couple of minutes.
- 1151 00:47:50.250 --> 00:47:51.303 <v ->Yes, of course.</v>
- $1152\ 00{:}47{:}52.170$ --> $00{:}47{:}57.150$ So here, the idea is to parameterize this family of matrices
- $1153\ 00:47:57.150 \longrightarrow 00:48:00.450$ by introducing a set of polynomials with coefficients alpha,
- $1154\ 00:48:00.450 \longrightarrow 00:48:03.420$ and then plugging into the polynomial
- $1155\ 00:48:03.420 --> 00:48:06.000$ the Laplacian that's generated by...
- $1156\ 00{:}48{:}06.000 {\:\hbox{--}}{>}\ 00{:}48{:}09.000$ The adjacency matrix generated by the graph motifs
- $1157\ 00:48:09.000 \longrightarrow 00:48:10.830$ we're interested in.
- 1158 00:48:10.830 --> 00:48:12.030 And that trait performance result,
- $1159\ 00{:}48{:}12.030 \dashrightarrow 00{:}48{:}14.310$ that was really just looking at the first order case here,
- 1160 00:48:14.310 --> 00:48:17.070 that was looking at a linear polynomial
- $1161\ 00:48:17.070 \longrightarrow 00:48:19.680$ with these chosen coefficients.
- $1162\ 00{:}48{:}19.680 \dashrightarrow 00{:}48{:}24.120$ This power series model is really nice analytically.
- 1163 00:48:24.120 --> 00:48:28.260 So if we start with some graph operator M,
- $1164\ 00{:}48{:}28.260 {\: -->\:} 00{:}48{:}31.020$ and we consider the family of covariance matrices
- $1165~00{:}48{:}31.020 \dashrightarrow 00{:}48{:}34.260$ generated by plugging M, M transpose into some
- 1166 00:48:34.260 --> 00:48:36.240 polynomial and power series,
- $1167\ 00:48:36.240 \longrightarrow 00:48:38.520$ then this family of matrices
- $1168\ 00{:}48{:}38.520 \dashrightarrow 00{:}48{:}42.213$ is contained within the span of powers of M, M transpose.
- $1169\ 00{:}48{:}45.030 \dashrightarrow 00{:}48{:}47.970$ You can talk about this family in terms of combinatorics.

- 1170 00:48:47.970 --> 00:48:49.830 So, for example, if we use that gradient
- $1171\ 00:48:49.830 \longrightarrow 00:48:52.410$ times gradient transpose minus twice the identity.
- $1172\ 00:48:52.410 \longrightarrow 00:48:54.660$ then powers of this is essentially, again, path counting,
- $1173\ 00:48:54.660 \longrightarrow 00:48:56.673$ so this is counting paths of length n.
- $1174\ 00:48:57.780 \longrightarrow 00:49:00.270$ You can also look at things like the trace of these powers.
- 1175 00:49:00.270 --> 00:49:01.980 So if you look at the trace series,
- $1176~00{:}49{:}01.980 \dashrightarrow 00{:}49{:}05.310$ that's the sequence where you look at the trace of powers
- $1177\ 00:49:05.310$ --> 00:49:07.893 of these, essentially, these adjacency matrices.
- 1178 00:49:08.820 --> 00:49:10.770 This is doing some sort of loop count,
- $1179\ 00:49:10.770 --> 00:49:13.800$ where we're counting loops of different length.
- $1180\ 00:49:13.800 \longrightarrow 00:49:15.300$ And you can think of this trace series, in some sense,
- $1181\ 00:49:15.300$ --> 00:49:18.690 as controlling amplification of self-correlations
- $1182\ 00:49:18.690 \longrightarrow 00:49:20.140$ within the sampled edge flow.
- 1183 00:49:21.840 --> 00:49:22.980 Depending on the generative model,
- $1184\ 00{:}49{:}22.980 {\:{\circ}{\circ}{\circ}}>00{:}49{:}24.720$ we might want to use different operators
- $1185\ 00:49:24.720 \longrightarrow 00:49:26.070$ for generating these families.
- $1186\ 00{:}49{:}26.070 \dashrightarrow 00{:}49{:}29.160$ So for example, going back to that synaptic plasticity model
- $1187\ 00{:}49{:}29.160 \dashrightarrow 00{:}49{:}32.820$ with coupled oscillators, in this case, using the gradient
- $1188\ 00:49:32.820 \longrightarrow 00:49:35.010$ to generate the family of covariance matrices
- $1189\ 00:49:35.010 \longrightarrow 00:49:36.750$ is not really the right structure,
- $1190\ 00:49:36.750 \longrightarrow 00:49:39.690$ because the dynamics of the model
- 1191 00:49:39.690 --> 00:49:42.690 have these natural cyclic connections.
- $1192\ 00{:}49{:}42.690 \dashrightarrow 00{:}49{:}45.660$ So it's better to build the power series using the curl.

- 1193 00:49:45.660 --> 00:49:47.130 So depending on your model,
- 1194 00:49:47.130 --> 00:49:48.840 you can adapt this power series family
- $1195\ 00:49:48.840 \longrightarrow 00:49:50.940$ by plugging in a different graph operator.
- $1196~00{:}49{:}52.560 \dashrightarrow 00{:}49{:}55.200$ Let's see now what happens if we try to compute
- $1197\ 00:49:55.200 \longrightarrow 00:49:57.810$ the expected sizes of some components
- $1198\ 00:49:57.810 \longrightarrow 00:50:00.240$ using a power series of this form.
- $1199\ 00:50:00.240 \dashrightarrow 00:50:04.380$ So, if the variance, or covariance matrix for edge flow
- $1200\ 00:50:04.380 \longrightarrow 00:50:06.270$ is a power series in, for example,
- 1201 00:50:06.270 --> 00:50:08.460 the gradient, gradient transpose,
- $1202\ 00:50:08.460 \longrightarrow 00:50:11.580$ then the expected sizes of the measures
- $1203\ 00:50:11.580 \longrightarrow 00:50:14.460$ can all be expressed as linear combinations
- $1204\ 00:50:14.460 \longrightarrow 00:50:16.110$ of this trace series
- $1205\ 00:50:16.110$ --> 00:50:18.600 and the coefficients of the original polynomial.
- $1206\ 00{:}50{:}18.600 \dashrightarrow 00{:}50{:}21.390$ For example, the expected cyclic size of the flow
- $1207\ 00:50:21.390 \longrightarrow 00:50:23.700$ is just the polynomial evaluated at negative two,
- $1208\ 00:50:23.700 \longrightarrow 00:50:26.130$ multiplied by the number of loops in the graph.
- 1209 00:50:26.130 --> 00:50:27.840 And this, this really generalizes
- 1210 00:50:27.840 --> 00:50:29.040 that trait performance result,
- $1211\ 00:50:29.040 --> 00:50:30.150$ because the trait performance result
- $1212\ 00:50:30.150 \dashrightarrow 00:50:33.033$ is given by restricting these polynomials to be linear.
- 1213 00:50:36.270 --> 00:50:39.693 This, you can extend to other bases.
- 1214 00:50:41.310 --> 00:50:43.260 But really, what this accomplishes
- 1215 00:50:43.260 --> 00:50:45.210 is by generalizing trait performance,
- $1216\ 00:50:45.210$ --> 00:50:50.210 we achieve this generic properties that it failed to have.
- 1217 00:50:52.140 --> 00:50:55.560 So in particular, if I have an edge flow subspace S

- $1218\ 00:50:55.560 \longrightarrow 00:50:58.740$ spanned by the flow motifs stored in some operator M,
- $1219\ 00:50:58.740 \longrightarrow 00:51:00.840$ then this power series family of covariances
- $1220\ 00:51:00.840$ --> 00:51:05.190 associated with the Laplacian, that is, M times M transpose,
- $1221\ 00:51:05.190 \longrightarrow 00:51:08.160$ is both expressive, in the sense that
- 1222 00:51:08.160 --> 00:51:10.950 for any non negative a and b,
- $1223\ 00:51:10.950 \longrightarrow 00:51:13.380\ I\ can\ pick\ some\ alpha\ and\ beta$
- $1224\ 00:51:13.380 \longrightarrow 00:51:14.730$ so that the expected size
- 1225 00:51:14.730 --> 00:51:17.700 of the projection of F onto the subspaces a,
- $1226~00{:}51{:}17.700 \dashrightarrow 00{:}51{:}21.600$ and the projected size of F on the subspace orthogonal to S
- $1227\ 00:51:21.600 \longrightarrow 00:51:26.133$ is b for any covariance in this power series family.
- 1228 00:51:27.060 --> 00:51:29.760 And it's sufficient in the sense that
- $1229\ 00:51:29.760 \longrightarrow 00:51:32.160$ for any edge flow distribution with mean zero,
- 1230 00:51:32.160 --> 00:51:34.710 and covariance V,
- $1231\ 00:51:34.710 \longrightarrow 00:51:37.980$ if C is the matrix nearest to V in Frobenius norm,
- $1232\ 00:51:37.980 \longrightarrow 00:51:40.380$ restricted to the power series family,
- 1233 00:51:40.380 --> 00:51:43.770 then these inner products computed in terms of C
- 1234 00:51:43.770 --> 00:51:45.570 are exactly the same as inner products
- $1235\ 00:51:45.570 \longrightarrow 00:51:47.070$ computed in terms of V,
- 1236 00:51:47.070 --> 00:51:49.020 so they directly predict the structure,
- $1237\ 00{:}51{:}49.020 \dashrightarrow 00{:}51{:}51.390$ which means that if I use this power series family,
- 1238 00:51:51.390 --> 00:51:53.580 discrepancies off of this family
- 1239 00:51:53.580 --> 00:51:55.380 don't change the expected structure.
- 1240 00:51:56.520 --> 00:51:57.353 Okay.
- 1241 00:51:57.353 --> 00:51:59.010 So, I know I'm short on time here,
- $1242\ 00{:}51{:}59.010 \dashrightarrow 00{:}52{:}02.790$ so I'd like to skip, then, just to the end of this talk.

- 1243 00:52:02.790 --> 00:52:04.200 There's further things you can do with this,
- 1244 00:52:04.200 --> 00:52:06.660 this is sort of really nice mathematically.
- $1245\ 00:52:06.660 \longrightarrow 00:52:09.510$ You can build an approximation theory out of this,
- $1246\ 00:52:09.510 \longrightarrow 00:52:11.730$ and study it for different random graph families,
- $1247\ 00:52:11.730 \longrightarrow 00:52:14.820$ how many terms in these power series you need.
- 1248 00:52:14.820 --> 00:52:16.380 And those terms define
- $1249\ 00:52:16.380 \dashrightarrow 00:52:18.570$ some nicer simple minimal set of statistics,
- $1250\ 00:52:18.570 \longrightarrow 00:52:20.433$ to try to estimate structure.
- 1251 00:52:22.110 --> 00:52:25.350 But I'd like to really just get to the end here,
- $1252\ 00:52:25.350 \longrightarrow 00:52:28.260$ and emphasize the takeaways from this talk.
- $1253\ 00:52:28.260 \longrightarrow 00:52:29.580$ So the first half of this talk
- 1254 00:52:29.580 --> 00:52:32.130 was focused on information flow.
- $1255\ 00:52:32.130 \longrightarrow 00:52:35.160$ What we saw is that information flow is a non-trivial,
- $1256\ 00:52:35.160 --> 00:52:36.810$ but well studied estimation problem.
- $1257\ 00:52:36.810 --> 00:52:38.280$ And this is something that, at least on my side,
- $1258\ 00:52:38.280 \longrightarrow 00:52:40.530$ is a work in progress with students.
- $1259\ 00:52:40.530 \longrightarrow 00:52:42.150$ Here, the, in some ways,
- 1260 00:52:42.150 --> 00:52:43.380 the conclusion of that first half
- 1261 00:52:43.380 --> 00:52:44.820 would be that causation entropy
- $1262\ 00:52:44.820 \dashrightarrow 00:52:46.890$ may be a more appropriate measure than TE
- $1263\ 00:52:46.890 \longrightarrow 00:52:48.540$ when trying to build these flow graphs
- $1264\ 00:52:48.540 \longrightarrow 00:52:51.240$ to apply these structural measures to.
- $1265\ 00:52:51.240 \longrightarrow 00:52:53.730$ Then, on the structural side, we can say that
- 1266 00:52:53.730 --> 00:52:54.600 power series families,
- 1267 00:52:54.600 --> 00:52:56.610 this is a nice family of covariance matrices.
- $1268\ 00:52:56.610 --> 00:52:59.490$ It has nice properties that are useful empirically,

- $1269\ 00:52:59.490 \dashrightarrow 00:53:01.830$ because they let us build global correlation structures
- $1270\ 00:53:01.830 \longrightarrow 00:53:03.450$ from a sequence of local correlations
- $1271\ 00:53:03.450 \longrightarrow 00:53:04.683$ from that power series.
- $1272\ 00{:}53{:}06.240 \dashrightarrow 00{:}53{:}08.220$ If you plug this back into the expected measures,
- 1273 00:53:08.220 --> 00:53:09.990 you can recover monotonic relations,
- 1274 00:53:09.990 --> 00:53:12.180 like in that limited trait performance case.
- 1275 00:53:12.180 --> 00:53:14.400 And truncation of these power series
- $1276\ 00:53:14.400 \longrightarrow 00:53:15.870$ reduces the number of quantities
- $1277\ 00:53:15.870 --> 00:53:17.663$ that you would actually need to measure.
- $1278\ 00{:}53{:}18.600 \dashrightarrow 00{:}53{:}21.210$ Actually, to a number of quantities that can be quite small
- 1279 00:53:21.210 --> 00:53:22.080 relative to the graph,
- $1280\ 00{:}53{:}22.080$ --> $00{:}53{:}24.353$ and that's where this approximation theory comes in.
- $1281\ 00:53:25.260 \longrightarrow 00:53:28.140$ One way, maybe to sort of summarize this entire approach,
- $1282\ 00:53:28.140 --> 00:53:30.810$ is what we've done is by looking at these power series
- $1283\ 00:53:30.810 \longrightarrow 00:53:33.030$ built in terms of the graph operators,
- $1284\ 00:53:33.030 \longrightarrow 00:53:35.460$ is it provides a way to study
- $1285\ 00{:}53{:}35.460 {\: -->}\ 00{:}53{:}39.120$ inherently heterogeneous connections, or covariances,
- $1286\ 00:53:39.120 \longrightarrow 00:53:40.530$ or edge flows distributions,
- 1287 00:53:40.530 --> 00:53:42.630 using a homogeneous correlation model
- $1288\ 00:53:42.630$ --> 00:53:46.110 that's built at multiple scales by starting with local scale
- $1289\ 00:53:46.110 \longrightarrow 00:53:47.553$ and then looking at powers.
- $1290\ 00:53:48.960 \longrightarrow 00:53:50.340$ In some ways, this is a common...
- 1291 00:53:50.340 --> 00:53:53.310 I ended a previous version of this talk with,
- 1292 00:53:53.310 --> 00:53:55.110 I still think that this structural analysis is,
- 1293 00:53:55.110 --> 00:53:57.270 in some ways, a hammer seeking a nail,

- 1294 00:53:57.270 --> 00:53:59.160 and that this information flow construction,
- $1295\ 00:53:59.160 --> 00:54:02.100$ this is work in progress to try and build that nail.
- $1296\ 00:54:02.100 \longrightarrow 00:54:04.110$ So thank you all for your attention.
- 1297 00:54:04.110 --> 00:54:06.690 I'll turn it now over to questions.
- 1298 00:54:06.690 --> 00:54:08.784 <v Instructor>(indistinct)</v>
- $1299\ 00:54:08.784 --> 00:54:11.370$ Thank you so much for your talk.
- $1300\ 00:54:11.370 \longrightarrow 00:54:12.573$ Really appreciate it.
- 1301 00:54:14.610 --> 00:54:15.600 For those of you on Zoom,
- 1302 00:54:15.600 --> 00:54:17.400 you're welcome to keep up the conversations,
- 1303 00:54:17.400 --> 00:54:19.890 but unfortunately we have to clear the room,
- $1304\ 00:54:19.890 --> 00:54:21.330$ so I do apologize.
- 1305 00:54:21.330 --> 00:54:22.230 But, (indistinct).
- 1306 00:54:24.690 --> 00:54:25.523 Dr. Strang?
- 1307 00:54:26.480 --> 00:54:27.423 Am I muted?
- 1308 00:54:30.330 --> 00:54:31.560 Dr. Strang?
- $1309\ 00:54:31.560 --> 00:54:33.190 < v -> Oh, yes, yeah. </v>$
- 1310 00:54:33.190 --> 00:54:35.160 <
v Instructor>Okay, do you mind if people...</br/>/v>
- 1311 00:54:35.160 --> 00:54:36.960 We have to clear the room, do you mind if people
- $1312\ 00:54:36.960 \longrightarrow 00:54:38.610$ email you if they have questions?
- 1313 00:54:39.990 --> 00:54:42.060 < v ->I'm sorry, I couldn't hear the end of the question. </v>
- $1314\ 00:54:42.060 \longrightarrow 00:54:43.130$ Do I mind if...
- 1315 00:54:45.060 --> 00:54:46.530 <v Instructor>We have to clear the room,</v>
- $1316\ 00:54:46.530 \longrightarrow 00:54:48.990$ do you mind if people email you if they have questions,
- 1317 00:54:48.990 --> 00:54:51.037 and (indistinct)... <v ->No, no, not at all.</v>
- 1318 00:54:51.933 --> 00:54:54.466 <
v Instructor>So I do apologize, they are literally
</v>

1319 00:54:54.466 --> 00:54:56.760 (indistinct) the room right now.

1320 00:54:56.760 --> 00:54:59.100 <
v ->Okay, no, yeah, that's totally fine.
</v>

1321 00:54:59.100 --> 00:55:00.660 <-> Instructor>Thank you.</v>

 $1322\ 00:55:00.660 \dashrightarrow 00:55:02.820$ And thanks again for a wonderful talk.

1323 00:55:02.820 --> 00:55:03.653 <-> Thank you.</v>