WEBVTT

00:00:18.750 --> 00:00:21.340 - All right, I see more people joining

 $00{:}00{:}31{.}960$ --> $00{:}00{:}34{.}760$ Jeff, how long do you how long do you have like an hour?

 $00:00:35.633 \longrightarrow 00:00:36.466$ Less than that?

 $00:00:36.466 \rightarrow 00:00:39.510$ - I think I can probably finish in less than an hour.

 $00:00:39.510 \longrightarrow 00:00:41.157$ - Less than hour, all right.

 $00:00:58.180 \longrightarrow 00:01:00.113$ I think we should get started.

00:01:01.580 --> 00:01:03.270 So hi, everyone.

 $00:01:03.270 \rightarrow 00:01:06.810$ Welcome to our seminar series on COVID-19,

00:01:06.810 --> 00:01:10.260 organized by the Department of Biostatistics.

 $00{:}01{:}10.260 \dashrightarrow 00{:}01{:}14.750$ I'm very pleased to have here today, Jeff Thompson,

 $00{:}01{:}14.750 \dashrightarrow 00{:}01{:}19.750$ Professor of biostatistics, Ecology and Evolutionary Biology

 $00:01:20.330 \longrightarrow 00:01:22.523$ from the Yale School of Public Health.

 $00:01:23.400 \rightarrow 00:01:26.670$ Thank you, Jeff, for being here today with us.

 $00:01:26.670 \rightarrow 00:01:29.690$ As usual, you're welcome to write questions

 $00{:}01{:}29.690$ --> $00{:}01{:}34.573$ in the chat box or even unmute yourself, if you can,

 $00:01:34.573 \rightarrow 00:01:38.151$ and other people are not talking.

00:01:38.151 --> 00:01:42.191 And, Jeff, why don't you take it from here?

00:01:42.191 --> 00:01:44.817 - Okay, thank you very much for the introduction, Laura.

 $00{:}01{:}44.817 \dashrightarrow 00{:}01{:}45.650$ I'm really pleased to have an opportunity to talk

 $00:01:45.650 \dashrightarrow 00:01:48.267$ about the work that we've been doing.

00:01:49.164 --> 00:01:51.882 I think like many speakers in this series, you know,

 $00{:}01{:}51{.}882 \dashrightarrow 00{:}01{:}54{.}013$ we've been doing a lot of work very hard

 $00{:}01{:}54{.}013 \dashrightarrow 00{:}01{:}56{.}993$ on a short period to try to get some progress on COVID-19.

 $00:01:57.830 \rightarrow 00:01:59.300$ Ironically, this is the first work

 $00:01:59.300 \dashrightarrow 00:02:02.900$ I think that I started In response to the COVID-19 epidemic

 $00:02:02.900 \rightarrow 00:02:07.374$ and it's turned out to be a lot of work. $00:02:07.374 \longrightarrow 00:02:08.953$ So it's actually gotten the least far. $00:02:11.276 \rightarrow 00:02:12.528$ So we've done a little bit of work, for instance, 00:02:12.528 --> 00:02:13.673 on epidemic modeling of COVID-19. 00:02:14.948 --> 00:02:17.919 That's already, it's actually been submitted, $00:02:17.919 \rightarrow 00:02:20.190$ I actually have some other work on quarantine $00:02:20.190 \rightarrow 00:02:23.830$ and stuff that turns out to be really interesting $00:02:23.830 \longrightarrow 00:02:25.443$ and far along in the research. 00:02:26.380 --> 00:02:27.790 And then this work, which I started early on, $00:02:27.790 \rightarrow 00:02:30.762$ which is more evolutionary, and looking at the zoonotic $00:02:30.762 \rightarrow 00:02:32.390$ process has gone a little bit slower. $00:02:32.390 \rightarrow 00:02:34.592$ So what that means is consistent with $00:02:34.592 \rightarrow 00:02:35.480$ many other speakers in this series, $00:02:35.480 \longrightarrow 00:02:37.716$ I'm gonna be talking a lot about $00:02:37.716 \rightarrow 00:02:40.265$ the methods that we're going to be using, $00:02:40.265 \rightarrow 00:02:43.089$ which are well developed, and what we're planning to do, $00:02:43.089 \rightarrow 00:02:44.110$ I don't have a lot of results. $00:02:44.110 \rightarrow 00:02:47.076$ But I think that's consistent with these talks in general. $00:02:47.076 \rightarrow 00:02:48.910$ So hopefully, that will be of interest to you $00:02:48.910 \rightarrow 00:02:53.330$ and also be illuminating in terms $00:02:53.330 \rightarrow 00:02:58.330$ of possible research approaches towards this kind of work. 00:02:58.340 --> 00:03:00.020 So as Laura mentioned, $00:03:00.020 \rightarrow 00:03:02.120$ I use a lot of evolutionary approaches $00:03:02.120 \longrightarrow 00:03:04.180$ to do my analyses of things. $00:03:04.180 \rightarrow 00:03:08.220$ And the title of this talk is model averaged estimation $00:03:08.220 \rightarrow 00:03:11.500$ of molecular evolution and natural selection $00:03:11.500 \rightarrow 00:03:14.240$ in SARS coronavirus, one and SARS coronavirus two

 $00:03:14.240 \rightarrow 00:03:18.000$ two Corona viruses during the zoonotic period.

 $00{:}03{:}18{.}000 \dashrightarrow 00{:}03{:}21{.}170$ So what was attracting my interest in this particular case

 $00{:}03{:}21.170$ --> $00{:}03{:}24.729$ is that it's usually very difficult and challenging to find.

 $00:03:24.729 \rightarrow 00:03:27.480$ And I'll get to this later in the talk to figure

 $00:03:27.480 \rightarrow 00:03:29.480$ out what's going on during the zoonotic period,

 $00{:}03{:}29{.}480$ --> $00{:}03{:}32{.}233$ because you don't usually get much sampling there.

 $00:03:32.233 \rightarrow 00:03:34.700$ So, what I wanted to do was apply some techniques

 $00:03:34.700 \dashrightarrow 00:03:37.700$ that I've developed to this problem.

00:03:37.700 --> 00:03:39.400 And I will get to those techniques

 $00{:}03{:}40{.}659 \dashrightarrow 00{:}03{:}42{.}849$ and the application to this problem.

00:03:42.849 --> 00:03:45.736 But I first just wanna give a little bit of introduction,

 $00:03:45.736 \rightarrow 00:03:46.790$ I think, maybe from a statistics point of view

 $00{:}03{:}46{.}790$ --> $00{:}03{:}49{.}330$ towards some of the methodologies that we're using,

 $00:03:49.330 \rightarrow 00:03:51.210$ just so everyone can sort of see on board

 $00:03:51.210 \rightarrow 00:03:53.330$ at least how I see this as contributing

 $00:03:54.643 \rightarrow 00:03:57.040$ to interesting statistical questions.

 $00{:}03{:}57{.}040$ --> $00{:}03{:}59{.}889$ So and in a broad sense, if I can get this to Move forward.

 $00:03:59.889 \rightarrow 00:04:01.320$ Here we go.

 $00:04:01.320 \longrightarrow 00:04:02.780$ I think one of the most intriguing

 $00{:}04{:}02{.}780$ --> $00{:}04{:}04{.}900$ and interesting and challenging areas of mathematics

 $00:04:04.900 \rightarrow 00:04:07.610$ and statistics is understanding this border

 $00{:}04{:}07.610$ --> $00{:}04{:}09.280$ between the discrete and the continuous.

 $00:04:09.280 \longrightarrow 00:04:12.550$ So these are just some one particular

 $00:04:12.550 \dashrightarrow 00:04:15.730$ example you can pick out is, if you look at discrete

 $00:04:15.730 \rightarrow 00:04:18.711$ and continuous distributions that are frequently

00:04:18.711 --> 00:04:21.360 in use in statistical probabilistic analyses,

 $00{:}04{:}21{.}360 \dashrightarrow 00{:}04{:}25{.}240$ we have the geometric and negative binomial distributions.

 $00{:}04{:}25{.}240$ --> $00{:}04{:}27{.}840$ And we have the exponential and gamma distributions.

 $00{:}04{:}29{.}809 \dashrightarrow 00{:}04{:}31{.}906$ These are basically essentially waiting for discrete events

 $00:04:31.906 \rightarrow 00:04:33.340$ when you have a probability over time.

 $00:04:33.340 \rightarrow 00:04:35.217$ We're waiting for the earth event if you

00:04:35.217 - 00:04:36.709 have probably over time,

 $00{:}04{:}36{.}709$ --> $00{:}04{:}39{.}160$ and they correspond to the distributions on a continuous

 $00:04:39.160 \longrightarrow 00:04:42.450$ time for the wait for the first event

 $00:04:42.450 \longrightarrow 00:04:44.650$ or the wait for the alpha event.

 $00:04:44.650 \rightarrow 00:04:46.330$ So there's a real clear correspondence

 $00:04:46.330 \longrightarrow 00:04:47.670$ between these two distributions.

 $00:04:47.670 \rightarrow 00:04:49.690$ And you can actually see in the mathematics,

 $00:04:49.690 \longrightarrow 00:04:51.183$ how they're similar as well.

00:04:52.558 --> 00:04:54.190 And that correspondence is kind of interesting.

 $00:04:54.190 \rightarrow 00:04:56.280$ And the reason why I say it's interesting is

 $00:04:56.280 \rightarrow 00:04:59.034$ because often many of the biggest problems I think

 $00:04:59.034 \rightarrow 00:05:00.820$ we wrestle with in statistics are when we're trying

 $00{:}05{:}00{.}820 \dashrightarrow 00{:}05{:}03{.}840$ to deal with data that is some intermediate

 $00:05:03.840 \rightarrow 00:05:06.600$ level between continuous and discrete,

 $00:05:06.600 \rightarrow 00:05:08.470$ and where we're trying to figure out which

 $00{:}05{:}08{.}470 \dashrightarrow 00{:}05{:}11{.}288$ approach is the best to use, should we use some sort

00:05:11.288 --> 00:05:12.830 sort of parameterize distribution to address it?

 $00:05:12.830 \rightarrow 00:05:15.290$ Or should we use some sort of nonparametric

 $00:05:16.731 \longrightarrow 00:05:17.780$ approach based on the discrete?

 $00:05:17.780 \dashrightarrow 00:05:19.300$ I'm not sure in any particular case.

00:05:19.300 --> 00:05:21.010 But I just wanna mention

 $00:05:21.010 \rightarrow 00:05:21.843$ that I think that's a very interesting area.

 $00:05:21.843 \rightarrow 00:05:23.480$ And the technique I'm gonna tell you about

 $00{:}05{:}23{.}480$ --> $00{:}05{:}26{.}910$ is definitely wrestling with exactly this kind of question.

 $00:05:26.910 \rightarrow 00:05:28.540$ So what kind of question do I mean?

 $00{:}05{:}28{.}540$ --> $00{:}05{:}32{.}050$ Well, I mean, questions that deal with state spaces,

00:05:32.050 --> 00:05:35.890 over time, or over any discrete or continuous axis. 00:05:35.890 --> 00:05:39.970 And you can see in this diagram just give you a picture

 $00:05:39.970 \longrightarrow 00:05:42.660$ of the kinds of problems that one deals with

 $00:05:42.660 \rightarrow 00:05:45.420$ between discrete and continuous measures.

00:05:45.420 --> 00:05:47.950 You can have here it's depicted as time,

 $00{:}05{:}47{.}950 \dashrightarrow 00{:}05{:}50{.}640$ you could have a discrete state space,

 $00:05:50.640 \dashrightarrow 00:05:52.890$ state space you're measuring over time,

 $00:05:52.890 \rightarrow 00:05:56.240$ you could have a continuous sorry,

 $00:05:56.240 \rightarrow 00:05:59.270$ you're gonna have discrete measurements

 $00:05:59.270 \rightarrow 00:06:01.400$ over where You've got discrete time

 $00:06:01.400 \longrightarrow 00:06:03.480$ in a discrete state space,

 $00:06:03.480 \dashrightarrow 00:06:05.900$ you could also have discrete time

 $00{:}06{:}05{.}900 \dashrightarrow 00{:}06{:}08{.}210$ and a continuous state space.

00:06:08.210 --> 00:06:09.960 You can have continuous, continuous

 $00:06:11.638 \rightarrow 00:06:13.012$ or you can have discrete, continuous.

 $00:06:13.012 \rightarrow 00:06:15.380$ And this two on the bottom are, two on the left,

 $00{:}06{:}15{.}380 \dashrightarrow 00{:}06{:}17{.}429$ sorry, are the relevant ones for

 $00{:}06{:}17.429 \dashrightarrow 00{:}06{:}18.520$ what I wanna talk to you about.

 $00:06:18.520 \rightarrow 00:06:21.660$ In my research, which is largely focused

 $00{:}06{:}21.660$ --> $00{:}06{:}26.050$ on informatik data that we can obtain from sequencing

 $00:06:26.050 \longrightarrow 00:06:28.388$ or other approaches like that.

 $00{:}06{:}28{.}388 \dashrightarrow 00{:}06{:}30{.}050$ A lot of what we're trying to do is look at these discrete

 $00{:}06{:}30{.}050$ --> $00{:}06{:}34{.}145$ linear sequences that have sites DNA sites or amino acid

 $00:06:34.145 \rightarrow 00:06:37.100$ sites and trying to understand is there some

 $00:06:37.100 \rightarrow 00:06:39.760$ pattern in those sites that allows us to understand

 $00:06:39.760 \rightarrow 00:06:41.450$ something about the biology of the organism

 $00{:}06{:}41.450$ --> $00{:}06{:}44.590$ or the biology that we want to know something more about?

 $00:06:44.590 \rightarrow 00:06:47.884$ So what essentially I'm gonna be doing

 $00:06:47.884 \rightarrow 00:06:50.053$ is telling you about approach an approach

00:06:50.053 --> 00:06:53.730 that takes essentially discrete items over some X axis

 $00{:}06{:}53.730 \dashrightarrow 00{:}06{:}55.760$ here, in which case in my case, it's always going to be

 $00:06:55.760 \rightarrow 00:06:58.280$ sequence space, like the nucleotides

 $00{:}06{:}58.280 \dashrightarrow 00{:}07{:}00.540$ or the amino acids of a sequence.

 $00{:}07{:}00{.}540$ --> $00{:}07{:}03{.}920$ And turns it into these kinds of more discrete models.

 $00{:}07{:}03{.}920$ --> $00{:}07{:}07{.}142$ And then in some, in a procedure that I'm going to tell you

 $00{:}07{:}07{.}142 \dashrightarrow 00{:}07{:}09{.}090$ about actually gives us more of a continuous measure

 $00:07:10.405 \rightarrow 00:07:13.290$ over that space, it's not completely continuous,

 $00:07:13.290 \longrightarrow 00:07:14.470$ it actually is on every site.

00:07:14.470 --> 00:07:17.010 But when you work with hundreds of sites,

00:07:17.010 --> 00:07:18.810 it turns out to look very continuous

 $00:07:19.727 \longrightarrow 00:07:20.953$ in terms of how it appears.

 $00:07:22.259 \rightarrow 00:07:23.092$ But it's done with a discrete model

 $00{:}07{:}23.092 \dashrightarrow 00{:}07{:}24.330$ that looks over multiple sites.

00:07:24.330 --> 00:07:26.280 So well, I'll tell you how it works in a moment.

00:07:26.280 --> 00:07:28.300 And I hope it's of interest to you guys.

00:07:28.300 --> 00:07:30.640 So just to introduce that, in general,

 $00{:}07{:}30{.}640 \dashrightarrow 00{:}07{:}33{.}620$ the lab has worked on a lot of different kinds of data,

 $00:07:33.620 \rightarrow 00:07:35.950$ and including things like gene expression data

 $00{:}07{:}35{.}950$ --> $00{:}07{:}39{.}130$ that borders this discrete continuous measurement.

 $00:07:39.130 \rightarrow 00:07:41.710$ The old micro arrays we used to use give us

00:07:42.559 --> 00:07:43.900 essentially continuous measures of gene expression.

 $00:07:43.900 \longrightarrow 00:07:45.903$ Now we get discrete counts

 $00:07:45.903 \rightarrow 00:07:49.230$ from our census sequencing approaches.

 $00:07:49.230 \rightarrow 00:07:50.870$ Then all the sequence data we work with

 $00:07:50.870 \rightarrow 00:07:53.480$ often ends up being essentially clusters

 $00:07:53.480 \longrightarrow 00:07:55.750$ of sites and various kinds.

 $00{:}07{:}55{.}750 \dashrightarrow 00{:}07{:}58{.}880$ And then we also use a lot of phylogenetic inference,

 $00:07:58.880 \rightarrow 00:08:01.140$ which is another kind of just discrete modeling

 $00:08:01.140 \rightarrow 00:08:03.160$ in terms of the topology, but the borders

 $00{:}08{:}03{.}160 \dashrightarrow 00{:}08{:}05{.}780$ between these two because we have discrete modeling of the

 $00:08:06.840 \rightarrow 00:08:07.890$ topology, there are certain topologies

 $00:08:09.600 \rightarrow 00:08:11.704$ that the taxa that we're interested in looking at

 $00:08:11.704 \rightarrow 00:08:13.310$ that show their relationship to each other.

 $00:08:13.310 \longrightarrow 00:08:15.190$ At the same time, there's also a continuous

 $00:08:15.190 \rightarrow 00:08:17.420$ measure out of that, which is these branch lengths,

 $00:08:17.420 \rightarrow 00:08:19.210$ or how diverge these different tacks

 $00{:}08{:}19{.}210$ --> $00{:}08{:}22{.}193$ are from each other and constructing the phylogeny.

 $00:08:22.193 \rightarrow 00:08:23.950$ So this sort of border between discrete

00:08:23.950 --> 00:08:27.640 and continuous measures, always sort of plagues

00:08:27.640 --> 00:08:30.090 and intrigues me, I guess it would be the question.

00:08:30.090 --> 00:08:31.680 Okay, so what am I gonna do today?

 $00{:}08{:}31.680 \dashrightarrow 00{:}08{:}34.520$ What I wannado today is talk about

 $00{:}08{:}34{.}520$ --> $00{:}08{:}37{.}290$ maximum likelihood model averaging to profile clustering

 $00:08:37.290 \rightarrow 00:08:39.540$ of site types across discrete linear sequences.

 $00:08:39.540 \longrightarrow 00:08:40.780$ So at the very base level,

 $00:08:40.780 \longrightarrow 00:08:43.610$ how do we take kind of these discrete sequences

00:08:43.610 --> 00:08:45.760 of amino acids or nucleotides

 $00{:}08{:}45{.}760 \dashrightarrow 00{:}08{:}49{.}610$ and understand whether sites are closer to each other

 $00{:}08{:}49{.}610 \dashrightarrow 00{:}08{:}51{.}210$ or farther apart from each other

 $00:08:52.115 \rightarrow 00:08:52.948$ this is the question are they just uniformly

 $00:08:52.948 \rightarrow 00:08:54.760$ distributed site types across a sequence?

 $00:08:54.760 \rightarrow 00:08:57.110$ Are they clustered close together or far apart?

 $00:08:58.330 \longrightarrow 00:09:01.135$ Secondly, I'm gonna talk about how we can

00:09:01.135 --> 00:09:03.650 then use that approach to understand whether sites

 $00{:}09{:}03.650$ --> $00{:}09{:}07.360$ are under selection in a gene expressed in a sequence.

 $00:09:07.360 \rightarrow 00:09:09.190$ And what I mean by under selection is that,

00:09:09.190 --> 00:09:11.670 in fact, sites are changing in a rapid

 $00:09:11.670 \rightarrow 00:09:14.430$ or at a more rapid pace than you'd expect simply

 $00:09:14.430 \longrightarrow 00:09:16.199$ by mutation alone.

00:09:16.199 --> 00:09:17.929 So mutation, of course, is going to introduce

 $00:09:17.929 \rightarrow 00:09:19.050$ variation into a genetic sequence.

 $00{:}09{:}19{.}050 \dashrightarrow 00{:}09{:}21{.}460$ But when you see changes that are happening faster

 $00:09:21.460 \longrightarrow 00:09:23.330$ over time in a population,

 $00:09:23.330 \rightarrow 00:09:25.997$ then mutation alone would produce

 $00{:}09{:}25{.}997$ --> $00{:}09{:}28{.}670$ that implies that every time that mutation is happening,

 $00:09:28.670 \rightarrow 00:09:29.503$ it's spreading across the population.

 $00:09:29.503 \rightarrow 00:09:31.310$ And that's why you see that uptick

 $00:09:31.310 \rightarrow 00:09:33.720$ in the rate of change of those sites.

 $00:09:33.720 \rightarrow 00:09:35.610$ So we can actually use this clustering approach

 $00:09:35.610 \rightarrow 00:09:38.210$ to identify regions of the gene that have

 $00:09:38.210 \rightarrow 00:09:40.750$ that sort of uptick and I'll explain how we do that.

00:09:40.750 --> 00:09:43.360 Now lastly, I'm just going to show you a very few slides

 $00:09:43.360 \longrightarrow 00:09:44.800$ on the title of the talk,

 $00{:}09{:}44.800$ --> $00{:}09{:}47.540$ which is this model average estimation of the molecular

 $00{:}09{:}47.540$ --> $00{:}09{:}50.600$ evolution and natural selection in SARS Coronavirus one

00:09:50.600 --> 00:09:53.493 and SARS Coronavirus two during the zoonosis.

 $00:09:55.020 \rightarrow 00:09:56.800$ So by the time we refer to these,

 $00{:}09{:}56{.}800 \dashrightarrow 00{:}09{:}59{.}440$ I'll just let you know we're almost done with the talk.

 $00{:}09{:}59{.}440 \dashrightarrow 00{:}10{:}01{.}160$ AlL right, so to talk about the first one

 $00{:}10{:}01{.}160 \dashrightarrow 00{:}10{:}03{.}390$ maximum likelihood model averaging five clustering

 $00:10:03.390 \longrightarrow 00:10:06.153$ of sites across the street linear sequences.

00:10:08.860 --> 00:10:11.299 I just want to... (phone ringing)

 $00:10:11.299 \rightarrow 00:10:14.716$ Sorry, emphasize that we wanna figure out

 $00{:}10{:}20{.}430$ --> $00{:}10{:}22{.}390$ whether site types are clustered within a linear sequence.

 $00:10:22.390 \longrightarrow 00:10:24.350$ This sounds like a very straightforward

 $00:10:24.350 \rightarrow 00:10:26.831$ statistical question seems like something

 $00{:}10{:}26.831 \dashrightarrow 00{:}10{:}28.441$ that should have been addressed many, many times

 $00:10:28.441 \longrightarrow 00:10:29.320$ in the statistical literature.

 $00:10:29.320 \rightarrow 00:10:30.470$ Much to my surprise,

 $00:10:30.470 \rightarrow 00:10:34.070$ it's actually not terribly well explored.

 $00:10:34.070 \longrightarrow 00:10:35.645$ You have a linear sequence,

 $00:10:35.645 \rightarrow 00:10:37.630$ it's so long and you have site types of one type

 $00:10:37.630 \rightarrow 00:10:39.420$ or another are they clustered next to each other?

 $00{:}10{:}39{.}420$ --> $00{:}10{:}41{.}600$ Well, if you know the bounds of the region of interest,

00:10:41.600 --> 00:10:43.150 and others, if you can describe oh,

 $00:10:43.150 \rightarrow 00:10:45.450$ it's I'm interested in this domain right here,

 $00{:}10{:}46{.}331 \dashrightarrow 00{:}10{:}48{.}228$ and it's from site to site 90 or some other description.

 $00:10:48.228 \rightarrow 00:10:49.434$ If you know the bounds,

 $00:10:49.434 \rightarrow 00:10:52.090$ it's very simple to analyze that kind of data.

 $00:10:52.090 \rightarrow 00:10:54.810$ You can just quantify the site type proportions

00:10:54.810 -> 00:10:56.630 within and outside those bounds.

 $00{:}10{:}56{.}630 \dashrightarrow 00{:}10{:}59{.}419$ use something like a straightforward fisher's exact

 $00:10:59.419 \rightarrow 00:11:01.030$ test for significance extremely simple problem.

00:11:01.030 --> 00:11:03.590 But what if you don't actually know those bounds? 00:11:03.590 --> 00:11:04.950 What if you don't know even what you're looking for exactly?

 $00:11:04.950 \rightarrow 00:11:07.090$ you just know you're interested in concentrations

 $00:11:07.090 \rightarrow 00:11:09.700$ of one site type compared to another site type

 $00:11:09.700 \rightarrow 00:11:11.640$ across some discrete linear sequence,

 $00:11:11.640 \rightarrow 00:11:14.880$ like this series of zeros and ones you see below.

00:11:14.880 --> 00:11:16.970 There's one, zero, zeros, there's one, zero, ones,

 $00{:}11{:}16{.}970 \dashrightarrow 00{:}11{:}19{.}920$ there's periods where ones are closer to each other a series

 $00:11:19.920 \longrightarrow 00:11:22.440$ of ones are closer or farther apart from each other.

 $00:11:22.440 \longrightarrow 00:11:24.220$ How should we figure out whether things

 $00:11:24.220 \rightarrow 00:11:25.590$ are actually clustered in that site?

 $00:11:25.590 \rightarrow 00:11:26.930$ Or are they random?

 $00:11:26.930 \rightarrow 00:11:30.680$ So if you don't know exactly where to describe,

 $00:11:30.680 \rightarrow 00:11:33.050$ or what size you're looking for,

 $00:11:33.050 \rightarrow 00:11:34.700$ the most common solution people use

 $00:11:34.700 \rightarrow 00:11:36.330$ is some kind of sliding window,

 $00:11:36.330 \rightarrow 00:11:38.310$ they take a window over the series,

 $00:11:38.310 \rightarrow 00:11:40.257$ and they slide it across and say,

 $00:11:40.257 \rightarrow 00:11:41.480$ "How many are in this window?"

00:11:41.480 --> 00:11:44.100 And then you can come up with based on the sliding window

 $00:11:44.100 \rightarrow 00:11:45.835$ a sort of diagram of the clustering.

 $00:11:45.835 \rightarrow 00:11:49.450$ And that's an approach that actually does

 $00:11:49.450 \rightarrow 00:11:51.470$ give a good metric of the clustering

 $00:11:51.470 \rightarrow 00:11:53.280$ in terms of like you see peaks where there's

 $00:11:53.280 \rightarrow 00:11:55.740$ a lot of clustering and valleys where there is none.

 $00{:}11{:}55{.}740$ --> $00{:}11{:}59{.}022$ However, significance testing with that kind of approach

 $00:11:59.022 \longrightarrow 00:12:00.150$ is often awkward to construct.

00:12:00.150 --> 00:12:02.400 Due to a strong or autocorrelation

 $00:12:02.400 \rightarrow 00:12:04.490$ among this URL overlapping windows.

00:12:04.490 --> 00:12:05.610 And of course, if you just sort of

 $00{:}12{:}05{.}610$ --> $00{:}12{:}09{.}070$ take windows arbitrarily from one location to another,

 $00:12:09.070 \rightarrow 00:12:12.756$ then you're really instituting, (indistinct chatter) $00:12:12.756 \rightarrow 00:12:14.364$ then that causes problems.

 $00:12:14.364 \rightarrow 00:12:16.140$ Because what if the cluster is really on a border

 $00{:}12{:}16{.}140$ --> $00{:}12{:}19{.}205$ between two windows, so you have to slide it over and then

00:12:19.205 - 00:12:20.040 you have the autocorrelation.

 $00:12:20.040 \longrightarrow 00:12:21.440$ And it becomes actually statistically

00:12:21.440 --> 00:12:23.990 quite challenging to sort of account

 $00:12:23.990 \rightarrow 00:12:25.410$ for all of those auto correlations.

 $00:12:25.410 \longrightarrow 00:12:27.310$ Secondly, they need to specify that window

 $00{:}12{:}27{.}310 \dashrightarrow 00{:}12{:}30{.}610$ size itself presents a user with a procedural ambiguity

 $00{:}12{:}30{.}610$ --> $00{:}12{:}33{.}790$ that almost inevitably leads to post hoc selection of window

 $00{:}12{:}33{.}790 \dashrightarrow 00{:}12{:}37{.}010$ size and can mislead inference that is just the fact that

 $00:12:37.010 \rightarrow 00:12:39.030$ you have to choose a window size.

 $00:12:39.030 \rightarrow 00:12:41.070$ And if you don't actually have a good arbitrary

 $00:12:41.070 \longrightarrow 00:12:42.570$ outside reason to choose it.

00:12:42.570 --> 00:12:44.480 It's very hard not to choose a window size

 $00{:}12{:}44{.}480 \dashrightarrow 00{:}12{:}48{.}830$ that ends up validating your hypothesis in some way.

 $00:12:48.830 \rightarrow 00:12:50.680$ So it'd be better if we could just have an approach

 $00:12:50.680 \rightarrow 00:12:52.980$ that does not require us to place in some

 $00:12:52.980 \rightarrow 00:12:55.760$ arbitrary parameter that gives us a window size.

00:12:55.760 --> 00:12:57.680 So in order to address this question,

 $00{:}12{:}57.680 \dashrightarrow 00{:}13{:}00.710$ a postdoc of mine, John John, who you see below work

 $00:13:00.710 \longrightarrow 00:13:02.610$ with me to address it.

00:13:02.610 --> 00:13:03.950 Oh, I wanted to say one other thing,

 $00{:}13{:}03{.}950 \dashrightarrow 00{:}13{:}07{.}390$ which is that, yes, this has been addressed with some

 $00{:}13{:}07{.}390 \dashrightarrow 00{:}13{:}09{.}840$ nonparametric methods that people have developed,

00:13:10.750 --> 00:13:14.270 including some rather famous people like Sam Carlin.

 $00{:}13{:}14{.}270 \dashrightarrow 00{:}13{:}17{.}360$ And these are methods that do not assume prior knowledge.

00:13:17.360 --> 00:13:19.690 And they've been suggested to detect this clustering

 $00:13:19.690 \longrightarrow 00:13:20.860$ and discrete linear sequences.

00:13:20.860 --> 00:13:22.420 So you can do runs tests that look for

 $00{:}13{:}22{.}420 \dashrightarrow 00{:}13{:}25{.}700$ the longest unbroken run, or the variance of the run

 $00{:}13{:}25{.}700 \dashrightarrow 00{:}13{:}27{.}290$ links across the entire sequence.

 $00:13:27.290 \rightarrow 00:13:29.640$ Both of these are indicators of clustering.

 $00:13:29.640 \rightarrow 00:13:32.170$ Unfortunately, both of those are using

 $00:13:32.170 \longrightarrow 00:13:34.110$ are not sufficient tests.

00:13:34.110 --> 00:13:36.290 And those they don't use enough of the information

 $00{:}13{:}36{.}290 \dashrightarrow 00{:}13{:}38{.}860$ to say that you're actually have as much power as you'd

 $00:13:38.860 \longrightarrow 00:13:40.080$ like to do the analysis.

 $00:13:40.080 \longrightarrow 00:13:41.730$ And that's because if you use like

00:13:41.730 --> 00:13:43.700 the longest run link, for instance, of course,

 $00:13:43.700 \rightarrow 00:13:45.200$ you're only really using a little bit

 $00:13:45.200 \rightarrow 00:13:47.260$ of information about the entire sequence.

00:13:47.260 --> 00:13:49.450 And of course, you're really missing anything

00:13:49.450 --> 00:13:52.340 like the cluster of ones that are have a bunch of small

 $00:13:52.340 \rightarrow 00:13:54.200$ clusters that are all next to each other interspersed

 $00{:}13{:}54{.}200 \dashrightarrow 00{:}13{:}55{.}710$ with a few of the other type,

 $00:13:55.710 \rightarrow 00:13:58.740$ so the longest unbroken run doesn't work well.

00:13:58.740 --> 00:14:00.970 If you use the In terms of power,

00:14:00.970 --> 00:14:03.701 if you use the variance of long run link

 $00{:}14{:}03{.}701$ --> $00{:}14{:}05{.}160$ that gets rid of the fact that you're looking for just one.

 $00{:}14{:}05{.}160$ --> $00{:}14{:}07{.}440$ But unfortunately, a variance doesn't tell you anything

00:14:07.440 --> 00:14:09.290 about the relative position of site

 $00:14:11.102 \rightarrow 00:14:14.060$ that are of the same type across the sequence.

00:14:14.060 --> 00:14:17.535 So the fact that this one, one, one, one here is close

 $00{:}14{:}17.535 \dashrightarrow 00{:}14{:}19.828$ to the one, one here, and the one another is,

 $00{:}14{:}19{.}828$ --> $00{:}14{:}22{.}335$ and this the fact that these are all close to each other,

 $00:14:22.335 \rightarrow 00:14:25.210$ does not give us the power that it should

 $00:14:25.210 \rightarrow 00:14:26.590$ for understanding this region may

00:14:26.590 --> 00:14:30.250 be under maybe cluster.

 $00{:}14{:}30{.}250$ --> $00{:}14{:}33{.}210$ So variants of run length is also an underpowered approach.

 $00{:}14{:}33{.}210$ --> $00{:}14{:}36{.}170$ The most powerful approach that's been published out there,

 $00{:}14{:}36{.}170 \dashrightarrow 00{:}14{:}38{.}140$ aside from the ones we've been working on,

 $00:14:38.140 \longrightarrow 00:14:40.620$ is the empirical cumulative distribution functions

 $00{:}14{:}40{.}620$ --> $00{:}14{:}43{.}410$ to sick that's where you sort of go across the sequence

 $00{:}14{:}43{.}410$ --> $00{:}14{:}46{.}728$ and just say, "oh, okay, we're accumulating ones here,

 $00:14:46.728 \rightarrow 00:14:47.561$ we're shooting more accumulating more."

 $00:14:48.873 \rightarrow 00:14:49.830$ And there's fortunately a number

 $00:14:51.502 \rightarrow 00:14:53.153$ of highly developed statistical approaches

 $00:14:53.153 \rightarrow 00:14:55.400$ to look at the empirical distribution and figure

 $00:14:55.400 \rightarrow 00:15:00.030$ out whether you see an increase beyond

 $00:15:00.030 \rightarrow 00:15:02.950$ expected during some period during that ECDF,

 $00{:}15{:}02{.}950 \dashrightarrow 00{:}15{:}04{.}950$ the power is better than either the previous methods,

 $00:15:04.950 \rightarrow 00:15:06.700$ but it's still not very strong.

 $00:15:06.700 \rightarrow 00:15:08.340$ It's not clear that it includes all the

 $00:15:08.340 \longrightarrow 00:15:10.180$ information that it should.

 $00:15:10.180 \longrightarrow 00:15:11.756$ And it can be affected.

 $00{:}15{:}11.756 \dashrightarrow 00{:}15{:}13.730$ Research has shown that it can be affected

 $00{:}15{:}13{.}730 \dashrightarrow 00{:}15{:}16{.}060$ by the location of the cluster, which is not desirable.

00:15:16.060 --> 00:15:17.930 So if you have a cluster on an end,

 $00:15:17.930 \rightarrow 00:15:20.640$ that has less the ECDF will have less power

 $00:15:20.640 \rightarrow 00:15:23.320$ or more power compared to a cluster in the middle.

 $00:15:23.320 \rightarrow 00:15:26.300$ It's also challenging to interpret in the end,

 $00:15:26.300 \rightarrow 00:15:28.830$ for reasons I'm not gonna go into right away.

 $00:15:28.830 \longrightarrow 00:15:29.970$ So what did we do?

 $00:15:29.970 \rightarrow 00:15:32.420$ What we did was develop a tripartite divide

 $00{:}15{:}32{.}420 \dashrightarrow 00{:}15{:}34{.}920$ and conquer approach to model variant sites

 $00:15:34.920 \rightarrow 00:15:36.930$ based on iterative sub clustering.

00:15:36.930 --> 00:15:38.820 And I'll describe it in detail right now.

 $00:15:38.820 \rightarrow 00:15:40.370$ I'll just tell you the plus and the minus

 $00{:}15{:}40{.}370 \dashrightarrow 00{:}15{:}42{.}150$ of this approach at the beginning,

 $00:15:42.150 \longrightarrow 00:15:44.620$ which is it's sort of a bioinformatics approach

 $00:15:44.620 \rightarrow 00:15:47.930$ and that are bioinformatics statisticians approach

 $00{:}15{:}47{.}930 \dashrightarrow 00{:}15{:}50{.}380$ and that it uses intensive computation

 $00{:}15{:}50{.}380 \dashrightarrow 00{:}15{:}52{.}480$ to solve the problem instead of giving

 $00:15:52.480 \longrightarrow 00:15:54.373$ a strict analytical result.

00:15:55.409 - 00:15:57.810 And in fact, what it does is it just says,

00:15:57.810 --> 00:16:00.160 Well, if we're interested in clustering in any case,

 $00:16:00.160 \rightarrow 00:16:03.226$ clusters should be represented by increases in

 $00:16:03.226 \rightarrow 00:16:05.680$ the probability within some cluster central region

 $00:16:05.680 \rightarrow 00:16:08.310$ compared to some side regions.

 $00:16:08.310 \rightarrow 00:16:10.810$ And if we define CS and CE to be anything

00:16:10.810 --> 00:16:13.600 from the very beginning to the very end of the sequence,

00:16:13.600 --> 00:16:16.700 it encompasses all possible single clusters

 $00:16:16.700 \longrightarrow 00:16:19.404$ within a sequence.

 $00:16:19.404 \rightarrow 00:16:22.360$ So, for instance, if the cluster were on the far left $00:16:22.360 \rightarrow 00:16:24.600$ we can just define CS to be at zero,

 $00{:}16{:}24.600 \dashrightarrow 00{:}16{:}28.220$ the left hand cluster is nothing and the right hand cluster,

 $00{:}16{:}28{.}220 \dashrightarrow 00{:}16{:}33{.}220$ right hand area that has depressed in variant type intensity

 $00:16:35.220 \rightarrow 00:16:38.240$ would be the other category.

 $00:16:38.240 \rightarrow 00:16:41.600$ Anyway, so, what we can do is divide any sequence

 $00:16:41.600 \rightarrow 00:16:43.890$ into three sections, just count up the number

 $00:16:43.890 \rightarrow 00:16:46.460$ of site types in each one, estimate the maximum

 $00:16:46.460 \rightarrow 00:16:50.040$ likelihood probability for the site type

 $00:16:50.040 \rightarrow 00:16:51.970$ to be of the variant type of interest,

 $00:16:51.970 \rightarrow 00:16:54.900$ say it's a glycine amino acids within a protein

 $00{:}16{:}54{.}900 \dashrightarrow 00{:}16{:}59{.}900$ or add mean nucleotides limited gene, whatever it is.

 $00{:}16{:}59{.}960 \dashrightarrow 00{:}17{:}02{.}580$ So then you can just come up with a null hypothesis,

 $00:17:02.580 \rightarrow 00:17:06.060$ which is the likelihood under the hypothesis

 $00:17:06.060 \rightarrow 00:17:09.490$ that these things are located at random

 $00{:}17{:}09{.}490 \dashrightarrow 00{:}17{:}11{.}320$ across the whole sequence.

 $00:17:11.320 \longrightarrow 00:17:13.660$ And then an alternate hypothesis that allows

 $00{:}17{:}13.660$ --> $00{:}17{:}17.520$ that is invoking a model which involves more parameters,

 $00:17:17.520 \rightarrow 00:17:20.990$ which then separate separates into a clustered

 $00:17:20.990 \longrightarrow 00:17:22.890$ versus non-clustered state.

00:17:22.890 - 00:17:24.600 So that would be fine if what we really

00:17:24.600 --> 00:17:26.944 expected in a sequence was one cluster,

 $00:17:26.944 \rightarrow 00:17:29.094$ compared to nothing else,

00:17:29.094 --> 00:17:33.120 compared to the sort of baseline rate of clustering,

 $00:17:33.120 \rightarrow 00:17:35.414$ sort of baseline rate of variant types.

 $00:17:35.414 \rightarrow 00:17:39.040$ And but what we really want is an approach

 $00:17:39.040 \rightarrow 00:17:41.590$ that can take clustering at many, many levels.

 $00{:}17{:}41.590 \dashrightarrow 00{:}17{:}43.470$ So what if there's a cluster within the cluster

 $00:17:43.470 \rightarrow 00:17:44.780$ or cluster within left?

 $00:17:44.780 \longrightarrow 00:17:46.450$ So what you can do is then take each

00:17:46.450 --> 00:17:49.680 of these sub clusters you've identified and actually

00:17:49.680 --> 00:17:52.560 do the same process on them looking for whether there's

 $00{:}17{:}52{.}560 \dashrightarrow 00{:}17{:}56{.}030$ a higher likelihood of the data given another cluster

 $00{:}17{:}56{.}030$ --> $00{:}17{:}59{.}358$ somewhere within this sequence, et cetera, et cetera.

 $00{:}17{:}59{.}358 \dashrightarrow 00{:}18{:}03{.}730$ Now, if you think so this sort of dictates a procedure,

 $00:18:03.730 \rightarrow 00:18:06.890$ which is that you start, you input the sequence,

00:18:06.890 --> 00:18:08.900 you start at, you know, the first at

 $00:18:08.900 \rightarrow 00:18:10.770$ the left and move all the way to the right,

 $00:18:10.770 \rightarrow 00:18:13.200$ essentially, you find the most likely cluster

 $00:18:13.200 \longrightarrow 00:18:15.110$ among all the possible clusters.

 $00:18:15.110 \longrightarrow 00:18:17.200$ If the cluster is statistically significant,

 $00:18:17.200 \rightarrow 00:18:20.920$ you then sub sequence each of those three parts,

 $00:18:20.920 \rightarrow 00:18:23.730$ the left hand part, the central center part

 $00:18:23.730 \longrightarrow 00:18:25.870$ and the right hand part, find the most

 $00{:}18{:}25{.}870 \dashrightarrow 00{:}18{:}27{.}480$ likely clusters within each of them.

 $00:18:27.480 \rightarrow 00:18:29.560$ And proceed doing this until you reach a point

 $00{:}18{:}29{.}560 \dashrightarrow 00{:}18{:}31{.}830$ where you can no longer find any statistical evidence

 $00:18:31.830 \rightarrow 00:18:33.760$ that there is continued clustering within it.

 $00:18:33.760 \rightarrow 00:18:35.600$ And that's the point at which you stop.

 $00:18:35.600 \longrightarrow 00:18:36.670$ And then what you can do.

00:18:36.670 --> 00:18:38.500 And this, I think, is sort of a key because

 $00{:}18{:}38{.}500 \dashrightarrow 00{:}18{:}41{.}780$ at the end of that, what you get is one discrete diagram,

00:18:41.780 --> 00:18:43.520 kind of like that diagram I showed you initially,

 $00:18:43.520 \rightarrow 00:18:45.750$ where it proceeds flat, goes up,

00:18:45.750 -> 00:18:47.243 proceeds flat goes down, et cetera.

 $00:18:47.243 \rightarrow 00:18:49.890$ I'll show you an example of that in a moment.

00:18:49.890 --> 00:18:52.835 But what you really wanna do possibly,

 $00:18:52.835 \rightarrow 00:18:54.795$ right, what I think is really appealing about

 $00:18:54.795 \rightarrow 00:18:55.760$ this approach is that then you can take

 $00{:}18{:}55{.}760$ --> $00{:}18{:}58{.}720$ that as one model, the most likely model and you can look

 $00{:}18{:}58{.}720 \dashrightarrow 00{:}19{:}00{.}290$ at all the other possible models

 $00:19:00.290 \rightarrow 00:19:01.660$ that you could have constructed.

00:19:01.660 --> 00:19:04.730 And you can use AIC weighting to actually figure

00:19:04.730 --> 00:19:09.730 out how much you should believe what is the weight

00:19:11.375 - 00:19:13.039 for every possible model.

 $00:19:13.039 \rightarrow 00:19:14.470$ And then you can average across those models

 $00:19:14.470 \rightarrow 00:19:16.742$ to give you a continuous description

 $00{:}19{:}16{.}742 \dashrightarrow 00{:}19{:}18{.}180$ of how much clustering you see across the sequence.

 $00:19:18.180 \rightarrow 00:19:20.430$ And again, the advantage that I mentioned

 $00:19:20.430 \longrightarrow 00:19:21.530$ early on about this,

00:19:21.530 --> 00:19:23.870 from my standpoint is I haven't put in anything

 $00:19:23.870 \longrightarrow 00:19:26.350$ about how big a window how big a cluster,

 $00{:}19{:}26{.}350 \dashrightarrow 00{:}19{:}28{.}300$ I put in nothing about what I'm expecting

 $00:19:28.300 \longrightarrow 00:19:29.610$ to see out of the sequence.

00:19:29.610 --> 00:19:32.220 I'm just asking, what's the most likely description

 $00{:}19{:}32{.}220 \dashrightarrow 00{:}19{:}36{.}560$ of this given the assay penalty for parameterization

 $00:19:36.560 \longrightarrow 00:19:38.940$ and what the result gives me.

 $00:19:38.940 \rightarrow 00:19:41.400$ So then we have a bunch of different weights

 $00:19:41.400 \longrightarrow 00:19:43.003$ for all our different models.

 $00:19:44.251 \rightarrow 00:19:45.250$ And what it gives us something like this.

 $00{:}19{:}45{.}250$ --> $00{:}19{:}47{.}820$ So on the top, I've shown you the AIC model selection

 $00{:}19{:}47.820 \dashrightarrow 00{:}19{:}48.900$ which is the first thing I showed you

 $00{:}19{:}48{.}900 \dashrightarrow 00{:}19{:}51{.}420$ if I just took the most likely description

 $00:19:51.420 \longrightarrow 00:19:52.890$ of this particular sequence.

00:19:52.890 --> 00:19:54.820 It's not important what it is it's PRF

 $00{:}19{:}54{.}820$ --> $00{:}19{:}59{.}430$ ADHD, which has been widely studied in evolutionary biology.

 $00:19:59.430 \rightarrow 00:20:02.420$ But if you take this model selection would,

 $00:20:02.420 \longrightarrow 00:20:04.610$ the most likely description

 $00:20:04.610 \rightarrow 00:20:06.670$ given that sub clustering looks something like this

 $00{:}20{:}06{.}670 \dashrightarrow 00{:}20{:}09{.}660$ where we have a region with fairly high concentration

00:20:09.660 --> 00:20:13.730 of polymorphism, in this case, a valley,

00:20:13.730 --> 00:20:15.700 a region, an intermediate level,

 $00:20:15.700 \rightarrow 00:20:18.520$ a point where we have a lot of polymorphism.

 $00{:}20{:}18{.}520$ --> $00{:}20{:}21{.}260$ And then it moves and changes across the sequence.

 $00{:}20{:}21{.}260 \dashrightarrow 00{:}20{:}24{.}700$ Now, if you then instead take not just that one model,

 $00{:}20{:}24{.}700$ --> $00{:}20{:}27{.}500$ but a series of models and do the AIC model average,

00:20:27.500 --> 00:20:29.750 you get a much more continuous description across

 $00:20:29.750 \rightarrow 00:20:32.790$ the sequence of what the probability

 $00:20:32.790 \rightarrow 00:20:34.983$ of sight types being different is.

 $00:20:35.845 \rightarrow 00:20:37.280$ And that enables us to ask a question

 $00:20:37.280 \rightarrow 00:20:41.050$ that's a little bit more interesting in many cases,

 $00:20:41.050 \rightarrow 00:20:43.080$ and I'll show you how it enables us to ask questions

 $00{:}20{:}43.080 \dashrightarrow 00{:}20{:}45.400$ about natural selection in a moment.

00:20:45.400 --> 00:20:47.900 So in particular, it allows us to get an estimate,

00:20:48.975 - 00:20:50.353 you know of what the probability

 $00:20:50.353 \rightarrow 00:20:51.186$ is across the entire sequence.

 $00:20:51.186 \longrightarrow 00:20:52.310$ Even though we don't have

 $00:20:52.310 \longrightarrow 00:20:54.480$ observations within the central region

 $00:20:54.480 \longrightarrow 00:20:56.420$ or this barren region here.

 $00:20:56.420 \rightarrow 00:20:59.600$ We can still estimate what the model average,

 $00{:}20{:}59{.}600 \dashrightarrow 00{:}21{:}02{.}130$ probably of a change of hearing in different places

 $00:21:02.130 \longrightarrow 00:21:04.590$ have this gene are and that enables us

 $00:21:04.590 \rightarrow 00:21:07.640$ to ask questions that we otherwise could not do.

 $00:21:07.640 \rightarrow 00:21:11.160$ All right, so that's an introduction of MACML.

 $00{:}21{:}11{.}160 \dashrightarrow 00{:}21{:}14{.}010$ I'll just mention, and I could give you more detail on this.

 $00:21:14.010 \rightarrow 00:21:16.010$ It's like this is actually published work,

 $00:21:16.010 \longrightarrow 00:21:17.220$ so you can find it.

 $00{:}21{:}17{.}220 \dashrightarrow 00{:}21{:}19{.}080$ But compared to the ECDF statistics,

00:21:19.080 --> 00:21:21.140 that approach I just showed you has greater power

 $00:21:21.140 \longrightarrow 00:21:23.090$ to detect heterogeneous clusters

 $00{:}21{:}23.090$ --> $00{:}21{:}25.710$ it identifies clusters with greater accuracy and precision

 $00{:}21{:}25{.}710$ --> $00{:}21{:}28{.}410$ based on the Kullback-Liebler divergence between $00{:}21{:}28{.}410$ --> $00{:}21{:}31{.}450$ the actual distribution of the observed distribution,

 $00:21:31.450 \longrightarrow 00:21:32.950$ sorry, the actual distribution

 $00{:}21{:}34{.}201 \dashrightarrow 00{:}21{:}35{.}615$ and the inferred distribution.

 $00{:}21{:}35.615 \dashrightarrow 00{:}21{:}36.610$ It has better power and accuracy across

00:21:36.610 --> 00:21:37.920 different levels of clustering,

00:21:37.920 --> 00:21:39.520 better power and accuracy across

00:21:40.357 --> 00:21:41.315 different sequence links,

 $00:21:41.315 \rightarrow 00:21:43.071$ and better power and accuracy and finding

 $00:21:43.071 \rightarrow 00:21:44.540$ multiple clusters compared to a single cluster.

 $00:21:44.540 \rightarrow 00:21:46.560$ The disadvantage is, it's extraordinarily

00:21:46.560 --> 00:21:49.160 computationally intensive, and it is prohibitively

 $00:21:49.160 \longrightarrow 00:21:50.720$ so for very long sequences.

 $00:21:50.720 \rightarrow 00:21:53.160$ So for genes a very long length,

 $00:21:53.160 \rightarrow 00:21:55.210$ we can't actually run it on the full-length gene

 $00:21:55.210 \rightarrow 00:21:58.270$ and we have to do some more heuristic processes

 $00:21:58.270 \rightarrow 00:22:00.620$ to crunch those genes into smaller size.

 $00{:}22{:}00{.}620 \dashrightarrow 00{:}22{:}02{.}820$ Which we then can analyze and then build them up.

00:22:02.820 --> 00:22:04.880 Again, I won't go into those at the moment.

 $00:22:04.880 \rightarrow 00:22:07.100$ But the point is that at certain links,

 $00:22:07.100 \rightarrow 00:22:09.430$ it gets just computationally too intensive to go

 $00{:}22{:}09{.}430 \dashrightarrow 00{:}22{:}12{.}909$ through all the possible models that could explain the data.

 $00{:}22{:}12{.}909 \dashrightarrow 00{:}22{:}17{.}030$ Now, I've talked about the maximum-likelihood averaging

 $00:22:17.030 \rightarrow 00:22:18.890$ to profile clustering of site types

00:22:18.890 --> 00:22:21.210 across discrete linear sequences,

 $00{:}22{:}21{.}210$ --> $00{:}22{:}24{.}030$ introduced that methodology to now I'm gonna talk about

 $00:22:24.030 \rightarrow 00:22:26.200$ how we can at apply that methodology

 $00{:}22{:}26{.}200 \dashrightarrow 00{:}22{:}29{.}250$ to get us a better idea of which sites are under selection

 $00{:}22{:}29{.}250$ --> $00{:}22{:}32{.}120$ using a what's called a pause on random fields approach.

 $00:22:32.120 \rightarrow 00:22:33.980$ And don't worry about that terminology.

00:22:33.980 --> 00:22:37.170 You might know it from statistics,

 $00:22:37.170 \longrightarrow 00:22:39.700$ it has to do with a particular observation

00:22:39.700 --> 00:22:42.078 in molecular evolutionary biology,

 $00:22:42.078 \rightarrow 00:22:42.911$ which is why they're using it

```
00:22:44.433 \rightarrow 00:22:45.530 and it's not really important for this talk,
00:22:45.530 \longrightarrow 00:22:46.740 why it's called that.
00:22:48.385 \rightarrow 00:22:51.110 So let's go on and go ahead and do that talk
00:22:51.110 \rightarrow 00:22:53.155 about the model-averaged site selection
00:22:53.155 --> 00:22:54.377 using Poisson random fields.
00:22:54.377 \rightarrow 00:22:56.383 So first, I need to give you a little bit of background
00:22:56.383 \rightarrow 00:22:57.620 in the evolutionary biology for those of you
00:22:59.071 \rightarrow 00:23:00.465 who haven't had a lot of biology,
00:23:00.465 \longrightarrow 00:23:01.570 so you understand how this fits in with
00:23:01.570 \rightarrow 00:23:03.020 what we tend to do another strategy.
00:23:03.020 --> 00:23:04.906 Of course, evolutionary biologists
00:23:04.906 --> 00:23:05.960 are often very interested in understanding
00{:}23{:}05{.}960 \dashrightarrow 00{:}23{:}07{.}190 what things are under selection.
00:23:07.190 \rightarrow 00:23:08.730 And in the context of this talk,
00:23:08.730 \rightarrow 00:23:09.860 why is that important?
00:23:09.860 --> 00:23:12.035 Well, we'd really like to know what things
00:23:12.035 \rightarrow 00:23:13.800 are under selection in the COVID epidemic,
00:23:13.800 \rightarrow 00:23:15.860 because we'd like to know what sites
00:23:15.860 \rightarrow 00:23:17.760 are actually causing the COVID epidemic
00:23:17.760 \rightarrow 00:23:21.380 to spread more or not, and what sites may have
00:23:21.380 \rightarrow 00:23:23.580 been important in it prior to zoonosis,
00:23:23.580 \rightarrow 00:23:26.270 MSN, perhaps, especially in the context of this
talk.
00:23:26.270 \rightarrow 00:23:27.660 what sites were selected during
00:23:27.660 --> 00:23:30.610 that zoonotic process that made this virus perhaps
able
00:23:30.610 \rightarrow 00:23:32.590 to infect humans in the first place.
00:23:32.590 \rightarrow 00:23:34.312 So what we're doing is,
00:23:34.312 \longrightarrow 00:23:36.080 so to give you an introduction,
00:23:36.080 \rightarrow 00:23:38.560 I just wanna mention that they're sort of ways
00:23:38.560 \rightarrow 00:23:40.270 to look at ancient times and understand
```

 $00:23:40.270 \rightarrow 00:23:41.890$ whether selection was happening.

 $00:23:41.890 \longrightarrow 00:23:44.145$ And that's this approach that's called

 $00:23:44.145 \rightarrow 00:23:45.080$ that looks at phylogenetic divergence,

 $00:23:45.080 \rightarrow 00:23:47.397$ looking at multiple sites and saying,

00:23:47.397 --> 00:23:49.340 "Oh, we have a whole bunch of phylogeny

 $00:23:49.340 \rightarrow 00:23:51.070$ of how these organisms are related."

 $00{:}23{:}51{.}070$ --> $00{:}23{:}54{.}910$ And then we have a bunch of sites that are for each taxon.

 $00:23:54.910 \rightarrow 00:23:56.700$ When we see sites like this, for instance,

00:23:56.700 --> 00:23:59.660 that's having A and then a couple C's and then a G

 $00{:}23{:}59{.}660$ --> $00{:}24{:}02{.}870$ and another tacks on, we know that this site changed twice

 $00:24:02.870 \rightarrow 00:24:04.690$ on that phylogeny, at least right?

 $00{:}24{:}04.690 \dashrightarrow 00{:}24{:}08.770$ So it changed to probably change from C ancestrally

 $00{:}24{:}08{.}770 \dashrightarrow 00{:}24{:}11{.}460$ to an A in this lineage and to a G

 $00:24:11.460 \longrightarrow 00:24:13.060$ in this lineage independently.

 $00:24:13.060 \rightarrow 00:24:15.510$ And so the fact that it changed twice means

 $00{:}24{:}15{.}510 \dashrightarrow 00{:}24{:}18{.}210$ that it's got an elevated rate of change.

 $00{:}24{:}18{.}210 \dashrightarrow 00{:}24{:}19{.}500$ And that elevated rate of change is an indication

 $00:24:19.500 \longrightarrow 00:24:21.810$ that there's been positive selection for change.

 $00:24:21.810 \rightarrow 00:24:24.920$ It's especially likely in sort of pathogen hosts

 $00:24:24.920 \rightarrow 00:24:27.690$ interactions that high rates of high change are

00:24:27.690 --> 00:24:30.124 because pathogens are changing in order

 $00:24:30.124 \rightarrow 00:24:32.590$ to not be recognizable by their hosts.

 $00:24:32.590 \rightarrow 00:24:34.510$ And often the host has recognition proteins

00:24:34.510 --> 00:24:36.470 that are changing to still recognize the pathogen,

00:24:36.470 - 00:24:38.040 even the pathogen is changing.

 $00{:}24{:}38.040 \dashrightarrow 00{:}24{:}39.560$ So these high rates of evolution

 $00:24:39.560 \rightarrow 00:24:41.788$ are very strong indicators of selection

 $00:24:41.788 \longrightarrow 00:24:44.880$ in host pathogen situations.

 $00:24:44.880 \rightarrow 00:24:48.460$ So this is one way to study a natural selection.

 $00{:}24{:}48{.}460$ --> $00{:}24{:}52{.}030$ It does depend, though, on having a lot of data going back

 $00{:}24{:}52{.}030$ --> $00{:}24{:}54{.}630$ in time because you're actually reliant on these changes

 $00{:}24{:}54{.}630 \dashrightarrow 00{:}24{:}57{.}820$ are occurring in multiple places on multiple lineages.

 $00{:}24{:}57{.}820$ --> $00{:}25{:}02{.}230$ Now, a more recent level, and I'm going to go back

 $00:25:02.230 \longrightarrow 00:25:03.530$ to the middle in a moment.

 $00{:}25{:}04{.}837 \dashrightarrow 00{:}25{:}05{.}740$ But a very recent time, you may have

 $00:25:06.648 \rightarrow 00:25:08.294$ heard of selective sweep detection,

 $00:25:08.294 \rightarrow 00:25:10.812$ a couple of methods people use are tajima's D,

 $00{:}25{:}10.812 \dashrightarrow 00{:}25{:}13.700$ or IHS, there's a bunch of other methods that are out now.

 $00:25:13.700 \rightarrow 00:25:16.100$ And the idea there is to look at polymorphism.

 $00:25:16.100 \rightarrow 00:25:19.550$ And if you look at an individual, before selection,

00:25:19.550 --> 00:25:21.540 this is sort of just a idea diagram,

 $00:25:21.540 \longrightarrow 00:25:22.840$ not what you look at.

 $00{:}25{:}22{.}840$ --> $00{:}25{:}26{.}380$ But so if you look at an individual who has a variant,

 $00:25:26.380 \rightarrow 00:25:30.110$ and what you see in a population is that

 $00{:}25{:}30{.}110 \dashrightarrow 00{:}25{:}33{.}290$ one individual with variant, a variant that's important

 $00:25:33.290 \rightarrow 00:25:35.380$ as somehow swept across the population.

 $00:25:35.380 \rightarrow 00:25:37.240$ So if you see this would be before selection,

 $00{:}25{:}37{.}240 \dashrightarrow 00{:}25{:}39{.}280$ there's a lot of variation at a particular locus

 $00:25:39.280 \longrightarrow 00:25:41.410$ in the genome after selection,

 $00{:}25{:}41{.}410 \dashrightarrow 00{:}25{:}44{.}255$ that one individuals variant which contributed

 $00:25:44.255 \rightarrow 00:25:46.430$ to the reproductive fitness would then imply

 $00:25:46.430 \rightarrow 00:25:50.310$ that they would spread across the population.

 $00:25:50.310 \rightarrow 00:25:51.950$ And if they spread across the population,

 $00:25:51.950 \rightarrow 00:25:53.980$ then the genetic variants that were present

 $00:25:53.980 \rightarrow 00:25:56.210$ in that original individual spread across

 $00{:}25{:}56{.}210$ --> $00{:}25{:}59{.}700$ the population as well along with this selected site,

 $00{:}25{:}59{.}700 \dashrightarrow 00{:}26{:}03{.}820$ and so you can look for this kind of partial or speedy.

 $00:26:03.820 \longrightarrow 00:26:07.469$ And the selection is going on neither

 $00:26:07.469 \rightarrow 00:26:08.991$ of the approaches that I just talked about

 $00:26:08.991 \rightarrow 00:26:09.890$ or the approach that I'm doing today.

00:26:09.890 --> 00:26:12.036 So I just wanted to introduce those,

 $00{:}26{:}12.036 \dashrightarrow 00{:}26{:}12.869$ so you knew those are different.

 $00:26:12.869 \rightarrow 00:26:15.299$ And they're different because we're looking

 $00{:}26{:}15{.}299 \dashrightarrow 00{:}26{:}16{.}495$ at a more intermediate timescale.

 $00:26:16.495 \rightarrow 00:26:18.790$ That's like the sweet detection is purely

 $00:26:18.790 \rightarrow 00:26:20.880$ dependent on polymorphism in the population,

00:26:20.880 --> 00:26:23.720 like what's happening in a population right now.

00:26:23.720 --> 00:26:25.720 The phylogenetic divergence is purely dependent

 $00{:}26{:}25{.}720 \dashrightarrow 00{:}26{:}28{.}400$ on this ancient changes that you get from a phylogeny

00:26:28.400 --> 00:26:31.409 understanding how different species are related

 $00{:}26{:}31{.}409 \dashrightarrow 00{:}26{:}33{.}010$ to each other at an intermediate level,

00:26:33.010 --> 00:26:35.487 our methods use that use both the polymorphism 00:26:35.487 --> 00:26:37.260 and the divergence.

 $00{:}26{:}37{.}260$ --> $00{:}26{:}39{.}990$ And the idea here in the McDonald-Kreitman approach,

 $00:26:39.990 \rightarrow 00:26:41.980$ and the master approach I'm going to tell you

00:26:41.980 --> 00:26:45.600 about is that the polymorphism what you see generally

 $00:26:45.600 \rightarrow 00:26:48.298$ in the population is sort of consistent with this.

00:26:48.298 --> 00:26:51.240 Sorry, if I go back to this slide.

 $00:26:51.240 \longrightarrow 00:26:53.420$ With this before selection, you know,

 $00{:}26{:}53{.}420 \dashrightarrow 00{:}26{:}54{.}970$ all of these blue sites are assumed

 $00:26:54.970 \longrightarrow 00:26:56.510$ to not be under selection,

 $00{:}26{:}56{.}510$ --> $00{:}26{:}59{.}290$ and that generally what we believe in evolutionary biology,

 $00:26:59.290 \rightarrow 00:27:01.960$ because of empirical data that validates it

 $00{:}27{:}01{.}960 \dashrightarrow 00{:}27{:}05{.}220$ is that most sites that you find varying in populations

 $00:27:05.220 \longrightarrow 00:27:06.640$ are not under strong selection.

 $00:27:06.640 \rightarrow 00:27:07.930$ If they were on stronger selection,

 $00{:}27{:}07{.}930 \dashrightarrow 00{:}27{:}10{.}273$ they would probably fix it, every one would have them.

 $00:27:11.441 \rightarrow 00:27:13.116$ And if they were under negative selection,

 $00{:}27{:}13.116 \dashrightarrow 00{:}27{:}13.949$ they wouldn't rise to a high frequency.

00:27:13.949 --> 00:27:16.706 So generally speaking sites that you actually see

 $00{:}27{:}16.706 \dashrightarrow 00{:}27{:}18.330$ change differences between us and our genetics

 $00:27:18.330 \rightarrow 00:27:20.170$ typically are not affecting anything.

 $00:27:20.170 \longrightarrow 00:27:22.584$ Of course, we spend in our...

 $00:27:22.584 \rightarrow 00:27:23.850$ In the media, you only hear about the changes

 $00:27:23.850 \longrightarrow 00:27:25.060$ that actually affect things.

 $00:27:25.060 \rightarrow 00:27:26.470$ And that's because those are important to us,

 $00:27:26.470 \longrightarrow 00:27:28.429$ the ones that don't change anything

 $00:27:28.429 \longrightarrow 00:27:29.417$ we don't really care about.

 $00:27:29.417 \rightarrow 00:27:30.250$ So nobody talks about that much.

 $00{:}27{:}30{.}250$ --> $00{:}27{:}32{.}750$ But most of the changes within population or differences

 $00:27:32.750 \longrightarrow 00:27:35.175$ within population don't have much material effect.

 $00:27:35.175 \rightarrow 00:27:37.100$ So under that hypothesis,

 $00:27:37.100 \rightarrow 00:27:38.960$ then when you look at polymorphism,

 $00:27:38.960 \rightarrow 00:27:41.240$ most polymorphism is just an indication

 $00:27:41.240 \rightarrow 00:27:42.760$ of the underlying mutation rate,

 $00:27:42.760 \rightarrow 00:27:44.970$ some mutation happened didn't have any effect.

 $00:27:44.970 \rightarrow 00:27:47.410$ It's drifting up and down in the population.

 $00:27:47.410 \rightarrow 00:27:49.810$ And so the advantage of that is if you know

 $00:27:49.810 \rightarrow 00:27:52.040$ that polymorphism is signal is a signature

00:27:52.040 --> 00:27:53.966 of just random mutation, it gives us an estimate 00:27:53.966 --> 00:27:57.160 of the underlying mutation rate, which we can then compare

 $00:27:57.160 \rightarrow 00:27:59.610$ to the divergence and using that comparison,

 $00:27:59.610 \rightarrow 00:28:02.350$ we can understand how organisms are related.

 $00:28:02.350 \rightarrow 00:28:05.207$ So whether organisms are under selection

 $00:28:05.207 \rightarrow 00:28:07.104$ or not, if the divergence is high compared

 $00{:}28{:}07{.}104 \dashrightarrow 00{:}28{:}08{.}940$ to the polymorphism, that indicates a lot of selection.

 $00:28:08.940 \rightarrow 00:28:12.211$ That means (indistinct chatter)

 $00:28:12.211 \rightarrow 00:28:14.180$ in the timescale of the analysis you're doing,

 $00:28:14.180 \longrightarrow 00:28:17.280$ we have a lot of change the population,

 $00{:}28{:}17{.}280 \dashrightarrow 00{:}28{:}19{.}520$ and on the other hand, you have a lot of polymorphism

 $00{:}28{:}19{.}520 \dashrightarrow 00{:}28{:}22{.}100$ and not that much divergence, then that indicates

 $00:28:22.100 \rightarrow 00:28:23.350$ you've got a lot of change going on,

 $00:28:23.350 \rightarrow 00:28:25.809$ but it's not actually being directionally

 $00:28:25.809 \rightarrow 00:28:27.340$ selected because the divergence is much lower.

 $00:28:27.340 \rightarrow 00:28:29.640$ So how does that test work in practice?

00:28:29.640 --> 00:28:31.820 Well, just to step back for one moment,

 $00:28:31.820 \rightarrow 00:28:33.770$ so we're gonna apply that kind of test.

 $00:28:34.664 \rightarrow 00:28:36.210$ In this talk I'm applying that test

 $00:28:36.210 \longrightarrow 00:28:39.450$ to the emergence of COVID-19.

 $00{:}28{:}39{.}450 \dashrightarrow 00{:}28{:}43{.}600$ I'm actually applying it but also to SARS, which is fairly

 $00:28:43.600 \rightarrow 00:28:46.170$ closely related the SARS coronavirus one

 $00:28:46.170 \rightarrow 00:28:48.040$ because we have similar data and can apply

 $00{:}28{:}48{.}040 \dashrightarrow 00{:}28{:}51{.}820$ the same test in the same way to that data set.

 $00{:}28{:}51{.}820 \dashrightarrow 00{:}28{:}54{.}250$ And we're using in addition the SARS like

 $00:28:55.340 \longrightarrow 00:28:57.870$ Coronavirus in a sample that had been sequence

 $00:28:57.870 \longrightarrow 00:28:59.870$ basically collected from bats.

 $00:28:59.870 \longrightarrow 00:29:01.930$ Over the past 20 years or so,

 $00:29:01.930 \rightarrow 00:29:05.199$ so what you can see here is a phylogeny,

 $00{:}29{:}05{.}199$ --> $00{:}29{:}09{.}160$ which includes COVID-19 epidemic ongoing now in humans,

00:29:09.160 --> 00:29:12.790 the SARS epidemic, which caused some 400 deaths

 $00:29:12.790 \longrightarrow 00:29:17.610$ or so back in the early 2000s.

 $00{:}29{:}17.610 \dashrightarrow 00{:}29{:}21.260$ And what we're doing is analyzing both and looking at,

 $00:29:21.260 \rightarrow 00:29:24.890$ in particular, the very short internode here

 $00{:}29{:}24{.}890 \dashrightarrow 00{:}29{:}29{.}890$ were between the most closely related non human infections

 $00:29:30.950 \rightarrow 00:29:33.200$ and the human infection set that we can see.

 $00:29:33.200 \rightarrow 00:29:36.040$ And this internode here, also,

 $00{:}29{:}36{.}040 \dashrightarrow 00{:}29{:}39{.}040$ between these non human infections and the human

 $00:29:39.040 \rightarrow 00:29:41.770$ infections we can see here, because the changes

 $00:29:41.770 \rightarrow 00:29:45.010$ that may have enabled, we don't know,

 $00:29:45.010 \rightarrow 00:29:47.230$ there may be no changes that enabled it,

 $00:29:47.230 \longrightarrow 00:29:48.780$ maybe this virus throughout

 $00:29:48.780 \rightarrow 00:29:50.620$ its entire history could have infected humans,

 $00:29:50.620 \rightarrow 00:29:53.420$ but it just never managed to or never did.

00:29:53.420 --> 00:29:55.970 But if there are changes that are unique to this virus

 $00{:}29{:}55{.}970$ --> $00{:}29{:}58{.}890$ that happened during zoonosis, enabling it to infect us,

00:29:58.890 - > 00:30:00.430 they happened on this lineage,

 $00{:}30{:}00{.}430$ --> $00{:}30{:}03{.}280$ and so we're interested in seeing what those changes are.

00:30:04.200 --> 00:30:06.100 And so that's what we're gonna do is we're gonna run

 $00{:}30{:}06{.}100$ --> $00{:}30{:}10{.}030$ this polymorphism and divergence approach on this lineage.

 $00:30:10.030 \rightarrow 00:30:13.190$ And what I just want to make (indistinct chatter)

 $00:30:13.190 \longrightarrow 00:30:14.390$ clear to you is the reason

 $00:30:14.390 \rightarrow 00:30:17.510$ why the polymorphism divergence approach is important is $00:30:17.510 \rightarrow 00:30:20.482$ the phylogenetic approach, the ancient approach $00:30:20.482 \rightarrow 00:30:22.180$ relies on a large clade of data, which we don't have $00:30:22.180 \longrightarrow 00:30:24.248$ for that particular lineage here, $00:30:24.248 \rightarrow 00:30:25.600$ we just have the human infection, $00:30:25.600 \rightarrow 00:30:26.433$ which is no longer zoonotic. $00:30:26.433 \longrightarrow 00:30:27.500$ And we have this one lineage. $00:30:27.500 \longrightarrow 00:30:29.890$ And so what we can do is an cestrally reconstruct $00:30:29.890 \rightarrow 00:30:32.710$ the ancestor of this lineage, which is right here, $00:30:32.710 \rightarrow 00:30:34.190$ actually on the phylogeny, 00:30:34.190 - > 00:30:36.700 and also the ancestor right here, $00:30:36.700 \rightarrow 00:30:40.090$ and then use mass PRF, this approach that's based $00:30:40.090 \rightarrow 00:30:42.600$ on polymorphism in the room, so I'll explain to you $00:30:42.600 \rightarrow 00:30:45.560$ on the divergence between that ancestor $00:30:45.560 \rightarrow 00:30:48.390$ and the first ancestor of all the human infections. $00:30:48.390 \rightarrow 00:30:51.050$ And we can take that as the near zoonosis time $00:30:51.050 \rightarrow 00:30:52.620$ and figure out what mutations might $00:30:52.620 \rightarrow 00:30:54.290$ have happened during that time. $00:30:54.290 \rightarrow 00:30:56.410$ All right, so we're gonna do that in both $00:30:56.410 \rightarrow 00:30:58.163$ the COVID-19 and SARS cases. 00:30:59.130 --> 00:31:01.620 Now, how does this work in principle? $00:31:01.620 \rightarrow 00:31:02.660$ Well, there's an old approach, $00:31:02.660 \rightarrow 00:31:04.590$ which is not what we're using. $00{:}31{:}04.590 \dashrightarrow 00{:}31{:}05.960$ But I have to compare it to in order to $00:31:05.960 \rightarrow 00:31:08.653$ sort of reference it in terms of the literature. $00:31:09.490 \longrightarrow 00:31:11.480$ And that is that when you assume $00:31:11.480 \rightarrow 00:31:13.480$ that polymorphism is neutral, $00:31:13.480 \rightarrow 00:31:15.530$ we expect a different proportion of replacement

 $00{:}31{:}15{.}530$ --> $00{:}31{:}18{.}070$ to synonymous divergence compared to replacement

 $00:31:18.070 \rightarrow 00:31:21.150$ to synonymous polymorphism in a gene.

00:31:21.150 - 00:31:23.450 So it's just a two by two table here, again,

 $00:31:23.450 \rightarrow 00:31:25.360$ very simple statistics, where we look at

 $00:31:25.360 \rightarrow 00:31:27.730$ the number of replacement sites that are divergent

00:31:27.730 --> 00:31:30.113 the number of synonymous sites replacement,

 $00:31:30.113 \rightarrow 00:31:31.725$ again, is when an amino acid change

00:31:31.725 --> 00:31:32.580 occurs in a DNA sequence.

00:31:32.580 --> 00:31:35.070 DNA sequence changes can either change the amino acid

 $00{:}31{:}35{.}070$ --> $00{:}31{:}38{.}620$ or not depending on what the sequence of the code on

 $00{:}31{:}38{.}620 \dashrightarrow 00{:}31{:}41{.}600$ the three base pair code on in the DNA sequences.

 $00:31:41.600 \rightarrow 00:31:43.680$ So if there's a replacement, we tally it here,

 $00{:}31{:}43.680 \dashrightarrow 00{:}31{:}45.730$ if it's a synonymous change, that doesn't change the amino

 $00:31:45.730 \rightarrow 00:31:48.473$ acid, we tally it here, these ones are preserved.

 $00{:}31{:}48{.}473 \dashrightarrow 00{:}31{:}49{.}760$ Sometimes changes are presumably neutral because

 $00:31:49.760 \rightarrow 00:31:52.370$ they don't change anything about your protein.

 $00{:}31{:}52{.}370$ --> $00{:}31{:}55{.}690$ And then the if it's a polymorphic replacement,

 $00:31:55.690 \rightarrow 00:31:57.210$ then we see it here.

 $00{:}31{:}57{.}210$ --> $00{:}31{:}58{.}920$ And if it's a synonymous polymorphism we see it here.

 $00{:}31{:}58{.}920 \dashrightarrow 00{:}32{:}01{.}460$ So under the hypothesis that I mentioned,

 $00:32:01.460 \longrightarrow 00:32:03.930$ all three of these cells should occur, it should

 $00:32:03.930 \rightarrow 00:32:06.330$ be sort of changing in exactly the same way

00:32:06.330 --> 00:32:08.720 because polymorphic sites, whether they're replacement

 $00:32:08.720 \rightarrow 00:32:10.840$ are synonymous, we're assuming are neutral,

 $00:32:10.840 \rightarrow 00:32:12.380$ synonymous sites, whether the divergent

 $00:32:12.380 \rightarrow 00:32:15.084$ or polymorphic, we're assuming is neutral.

 $00:32:15.084 \rightarrow 00:32:16.330$ The only one that apparently that under

 $00:32:17.191 \rightarrow 00:32:19.021$ assumption is not neutral are these replacement

 $00:32:19.021 \rightarrow 00:32:21.690$ changes at replacement divergence sites.

 $00:32:21.690 \dashrightarrow 00:32:25.390$ So, if this replacement divergence, if the marginals

 $00{:}32{:}25{.}390 \dashrightarrow 00{:}32{:}28{.}510$ add up so that this replacement divergence is sort of in

 $00{:}32{:}28{.}510$ --> $00{:}32{:}30{.}415$ line with all these others, then we assume nothing important

 $00{:}32{:}30{.}415 \dashrightarrow 00{:}32{:}33{.}060$ is happening in that gene, it's probably not selected,

 $00:32:33.060 \rightarrow 00:32:35.460$ it's just neutral changes that are happening there.

 $00:32:35.460 \rightarrow 00:32:37.924$ If this divergence is higher, though,

 $00{:}32{:}37{.}924 \dashrightarrow 00{:}32{:}39{.}391$ then we might conclude that it's under

 $00:32:39.391 \longrightarrow 00:32:40.860$ selection for changes at a rapid pace.

 $00:32:40.860 \dashrightarrow 00:32:43.770$ So neutrality yields a DN over DS that's equal

 $00:32:43.770 \rightarrow 00:32:45.945$ to the PN over PS positive selection means

 $00{:}32{:}45{.}945$ --> $00{:}32{:}49{.}680$ that the DN DS is greater than the PN PS and negative

 $00:32:49.680 \dashrightarrow > 00:32:53.010$ selection where changes are actually being selected against

00:32:53.010 - > 00:32:56.130 at a high level indicates the DN DS

 $00:32:56.130 \longrightarrow 00:32:57.913$ is gonna be less than PN PS.

 $00:32:58.840 \rightarrow 00:33:01.010$ All right now Let's get to a little bit of the

00:33:01.010 --> 00:33:04.245 complexity on this thing that I mentioned that's called

 $00{:}33{:}04{.}245 \dashrightarrow 00{:}33{:}05{.}078$ Poisson random field theory, quantitatively estimates

00:33:05.078 --> 00:33:09.270 gene-wide selection intensity.

 $00:33:09.270 \longrightarrow 00:33:10.820$ So what you can do is take that

 $00{:}33{:}12{.}108$ --> $00{:}33{:}13{.}880$ same two by two table, and you can say under a model of

 $00{:}33{:}13.880 \dashrightarrow 00{:}33{:}17.675$ selection, what do we actually think is happening here.

 $00{:}33{:}17.675 \dashrightarrow 00{:}33{:}19.877$ And that gives us the ability to estimate the selection

00:33:19.877 --> 00:33:21.760 coefficient, which is a basically the rate at which that

 $00:33:21.760 \dashrightarrow 00:33:25.420$ change allows the virus to increase its reproductive ability

 $00:33:25.420 \longrightarrow 00:33:27.382$ or survival ability in the host.

 $00:33:27.382 \rightarrow 00:33:31.700$ And that that is this gamma term right here

 $00:33:31.700 \rightarrow 00:33:34.070$ in these terms, and this, these look complicated,

 $00:33:34.070 \longrightarrow 00:33:36.350$ but essentially, these formulas are just saying

 $00{:}33{:}36{.}350 \dashrightarrow 00{:}33{:}38{.}880$ that the expectation for a synonymous sorry,

 $00:33:38.880 \longrightarrow 00:33:41.385$ the synonymous and replacement have reversed

00:33:41.385 - 00:33:43.061 on this chart compared to the last,

 $00:33:43.061 \longrightarrow 00:33:44.538$ so don't be confused by that.

 $00:33:44.538 \rightarrow 00:33:45.480$ But the expectation under synonymous

 $00:33:45.480 \rightarrow 00:33:47.613$ changes is essentially the mutation rate.

 $00{:}33{:}48{.}487{\:-}{-}>00{:}33{:}50{.}220$ And these terms are just about the sampling properties

 $00{:}33{:}50{.}220$ --> $00{:}33{:}52{.}470$ of when you sequence how many of these things you get,

 $00{:}33{:}52{.}470 \dashrightarrow 00{:}33{:}54{.}600$ I don't need to go into the detail about that here.

 $00{:}33{:}54.600 \dashrightarrow 00{:}33{:}56.680$ Similarly, the polymorphic sequence

 $00:33:56.680 \rightarrow 00:33:59.850$ is just basically dependent on the mutation rate.

 $00{:}33{:}59{.}850 \dashrightarrow 00{:}34{:}02{.}060$ How the replacement sequences are a little bit more

 $00{:}34{:}02{.}060 \dashrightarrow 00{:}34{:}06{.}680$ complicated in that they have to account

 $00:34:06.680 \rightarrow 00:34:09.683$ for kinds of selection that may be going on.

00:34:10.780 --> 00:34:12.450 For reasons that I don't wanna get into

 $00{:}34{:}12{.}450$ --> $00{:}34{:}15{.}820$ the polymorphic selection, so both of them are depending

 $00:34:15.820 \rightarrow 00:34:17.990$ on the mutation rate for replacement sites,

 $00:34:17.990 \longrightarrow 00:34:20.045$ and both of them depend on

 $00:34:20.045 \dashrightarrow 00:34:22.620$ how much each variant is selected.

 $00:34:22.620 \rightarrow 00:34:24.810$ Selection doesn't pack the polymorphism $00:34:24.810 \longrightarrow 00:34:27.000$ to a certain degree in the sense that if variants $00:34:27.000 \rightarrow 00:34:29.520$ are moving through the population very fast, $00:34:29.520 \rightarrow 00:34:32.180$ that can change how much polymorphism you see. $00:34:32.180 \rightarrow 00:34:35.750$ But then if you use these sampling formulas, and the formula $00:34:35.750 \rightarrow 00:34:38.050$ for the estimate of the strength of selection, $00:34:38.050 \rightarrow 00:34:40.850$ given how many variants we see changing, $00:34:40.850 \rightarrow 00:34:43.560$ you get these formulas for how much replacement $00:34:44.409 \rightarrow 00:34:46.697$ divergence and polymorphism you expect to see. $00:34:46.697 \rightarrow 00:34:48.830$ So this is a population genetics that was worked $00:34:48.830 \rightarrow 00:34:52.420$ out by Stan Sawyer and Dan Hurley in 1992. $00:34:52.420 \rightarrow 00:34:55.860$ The only change I'm making in this is pure F, $00:34:55.860 \rightarrow 00:35:00.400$ instead of using a year which was how many grants $00:35:00.400 \rightarrow 00:35:04.190$ that you see in the the McConnell Craven uses it, 00:35:04.190 --> 00:35:07.680 I'm taking the probabilities of replacement divergence $00:35:07.680 \rightarrow 00:35:10.695$ and the probabilities of some polymorphism $00:35:10.695 \rightarrow 00:35:12.286$ and putting them in here. $00:35:12.286 \rightarrow 00:35:13.250$ And the advantage here is that what $00:35:13.250 \rightarrow 00:35:15.170$ I can do with that is what I mentioned earlier, 00:35:15.170 --> 00:35:17.750 I can go back to the old mass MACML 00:35:17.750 --> 00:35:20.320 approach sequence clustering approach 00:35:20.320 --> 00:35:23.070 that I mentioned before, estimating those probabilities $00:35:24.665 \rightarrow 00:35:26.530$ across the entire gene, I can then estimate action across $00:35:26.530 \rightarrow 00:35:30.370$ the entire gene by using these probability single site, $00:35:30.370 \rightarrow 00:35:32.430$ I don't have changes for single site. $00:35:32.430 \longrightarrow 00:35:33.850$ So what this allows $00:35:33.850 \rightarrow 00:35:37.709$ us to estimate this gamma, minimizing likelihood

32

of what

 $00:35:37.709 \rightarrow 00:35:41.900$ gamma is to blame those problems exist, see.

 $00{:}35{:}41{.}900 \dashrightarrow 00{:}35{:}46{.}360$ So this is a very complex diagram of how this all works,

 $00{:}35{:}46{.}360 \dashrightarrow 00{:}35{:}50{.}050$ again, is a pretty elaborate method of computation.

 $00{:}35{:}50{.}050$ --> $00{:}35{:}53{.}190$ But again, has the nice properties that I'm not putting

00:35:53.190 --> 00:35:55.090 in any I'm not using assumptions

 $00:35:55.090 \rightarrow 00:35:56.480$ and not putting in any parameters.

 $00:35:56.480 \longrightarrow 00:35:57.934$ They go in.

 $00{:}35{:}57{.}934$ --> $00{:}36{:}00{.}740$ I just take the polymorph at the end analyze it for

 $00:36:00.740 \dashrightarrow 00:36:03.860$ weather sites are clustered into four different categories.

00:36:03.860 --> 00:36:05.690 Again, replacement polymorphism.

 $00:36:05.690 \longrightarrow 00:36:07.050$ That's this arc here.

 $00{:}36{:}07{.}050$ --> $00{:}36{:}11{.}233$ So polymorphisms anonymous divergence, placement divergence,

 $00:36:12.427 \rightarrow 00:36:15.300$ we cluster within all four of those categories.

 $00:36:15.300 \rightarrow 00:36:16.990$ We calculate the model average probability,

 $00:36:16.990 \rightarrow 00:36:20.200$ all those clusters and merge the data together.

00:36:20.200 --> 00:36:21.560 I'm not going to go through the details.

 $00:36:21.560 \rightarrow 00:36:24.890$ But just if you were to do essentially the KML,

 $00:36:24.890 \rightarrow 00:36:27.050$ like clustering on those four categories

 $00:36:27.050 \longrightarrow 00:36:29.570$ for a particular gene polymorphisms

 $00:36:29.570 \dashrightarrow 00:36:32.690$ and Ana's polymorphisms, monster and placement divergence

 $00{:}36{:}32.690 \dashrightarrow 00{:}36{:}36.550$ if you plug those in, to the formulas I showed you before,

00:36:36.550 --> 00:36:39.354 you're basically plugging into these categories,

 $00:36:39.354 \dashrightarrow 00:36:40.904$ you can estimate those formulas.

 $00:36:40.904 \longrightarrow 00:36:42.000$ And in the end, what you get is

 $00{:}36{:}42.000 \dashrightarrow 00{:}36{:}46.763$ an estimate of gamma across nucleotide positions in a gene.

00:36:48.750 --> 00:36:50.870 I won't go into what this result here,

 $00:36:50.870 \longrightarrow 00:36:52.770$ it's an interesting result for reasons

 $00:36:53.920 \rightarrow 00:36:55.180$ that are only of interest mostly to evolutionary

00:36:56.146 --> 00:36:58.150 biologist, but you can see here in this particular gene

 $00{:}36{:}58{.}150 \dashrightarrow 00{:}37{:}02{.}360$ that there's a lot of variation in the selection

 $00:37:02.360 \longrightarrow 00:37:04.140$ intensity across the gene.

 $00:37:04.140 \longrightarrow 00:37:05.590$ Now, that is actually really

 $00:37:05.590 \rightarrow 00:37:07.560$ consistent with what we'd expect.

 $00:37:07.560 \rightarrow 00:37:10.223$ From a sort of basic biology standpoint.

 $00{:}37{:}11{.}340 \dashrightarrow 00{:}37{:}13{.}210$ Different parts of a gene are gonna either

 $00:37:13.210 \longrightarrow 00:37:15.230$ be very strongly selected to stay the same

00:37:15.230 --> 00:37:18.321 or they're gonna change, you shouldn't really expect

 $00:37:18.321 \rightarrow 00:37:19.770$ that all parts of gene are equally likely to change.

 $00:37:19.770 \rightarrow 00:37:22.129$ And this gives a very nice diagram

 $00:37:22.129 \dashrightarrow 00:37:23.185$ that allows you to understand how

 $00:37:23.185 \longrightarrow 00:37:24.730$ it's different across the gene.

 $00:37:24.730 \rightarrow 00:37:27.070$ So if we compare this kind of approach

 $00:37:27.070 \rightarrow 00:37:30.451$ to the McDonald kreitman tests, which again,

 $00{:}37{:}30{.}451 \dashrightarrow 00{:}37{:}33{.}460$ are just putting in the DN DS, PN PS values

 $00:37:33.460 \longrightarrow 00:37:35.666$ into this two by two table,

 $00{:}37{:}35{.}666$ --> $00{:}37{:}38{.}520$ and I went through that, the important difference is that

 $00{:}37{:}38{.}520$ --> $00{:}37{:}41{.}760$ the Mk test assumes this intergenic homogeneous selection

 $00:37:41.760 \longrightarrow 00:37:44.070$ that in fact, a gene has the same selection

 $00:37:44.070 \longrightarrow 00:37:45.570$ across the entire sequence.

 $00:37:45.570 \longrightarrow 00:37:48.350$ The problem with that is if you have one small

 $00:37:48.350 \longrightarrow 00:37:49.983$ region that's under selection,

 $00{:}37{:}49{.}983 \dashrightarrow 00{:}37{:}52{.}633$ the averaging out process across that entire gene

 $00:37:52.633 \dashrightarrow 00:37:53.910$ can mean that you don't detect the selection there,

00:37:53.910 --> 00:37:57.160 even though it may be very strong for that small region.

 $00:37:57.160 \rightarrow 00:38:00.540$ And so the hope is that mastery graph can

 $00:38:00.540 \rightarrow 00:38:02.120$ identify those regions much better

00:38:02.120 --> 00:38:04.290 than MK for instance, would.

00:38:04.290 --> 00:38:07.173 And in fact, I went through this already.

00:38:08.528 --> 00:38:11.673 I'll just skip past this because I went through it already.

 $00{:}38{:}12{.}900 \dashrightarrow 00{:}38{:}17{.}820$ And this it does do that.

 $00{:}38{:}17.820 \dashrightarrow 00{:}38{:}20.830$ So this is an example of McDonnell Craven

 $00:38:20.830 \rightarrow 00:38:23.290$ tests here applied to a Drosophila gene,

 $00:38:23.290 \rightarrow 00:38:27.200$ what you see is this high evolution of a high level

 $00:38:27.200 \rightarrow 00:38:29.750$ of replacement divergence, which turns out

 $00:38:29.750 \longrightarrow 00:38:32.760$ to indicate high selection.

 $00:38:32.760 \longrightarrow 00:38:35.370$ And you can see here that the DN DS ratio

 $00:38:35.370 \longrightarrow 00:38:38.410$ is about eight to one word as the PN PS ratio

 $00{:}38{:}38{.}410 \dashrightarrow 00{:}38{:}39{.}880$ is almost even.

 $00:38:39.880 \rightarrow 00:38:42.390$ So this is a gene that's under very strong selection

 $00:38:42.390 \dashrightarrow 00:38:44.970$ based on the McDonald kreitman test.

 $00:38:44.970 \rightarrow 00:38:46.820$ Now, interestingly, so this one works

 $00:38:46.820 \longrightarrow 00:38:49.000$ with a homogeneity.

 $00:38:49.000 \rightarrow 00:38:53.427$ And then if you analyze the ACP 26 AA gene

 $00:38:55.220 \rightarrow 00:38:57.900$ and look for the probability of all four categories.

 $00:38:57.900 \rightarrow 00:39:00.960$ These are the four categories and of course,

 $00:39:00.960 \rightarrow 00:39:03.622$ the replacement divergence here is the one

 $00:39:03.622 \rightarrow 00:39:05.720$ that's most likely to drive selection.

 $00:39:05.720 \dashrightarrow 00:39:08.773$ What do you get when you estimate gamma using this?

00:39:08.773 --> 00:39:09.840 Well, interestingly, what you see is not something 00:39:09.840 --> 00:39:12.710 that's under very strong selection across the entire gene,

 $00{:}39{:}12{.}710$ --> $00{:}39{:}14{.}970$ but something that's on moderately strong selection,

 $00:39:14.970 \rightarrow 00:39:16.740$ basically in the second half of the gene,

 $00:39:16.740 \longrightarrow 00:39:18.780$ and then one peak of very strong

 $00:39:18.780 \rightarrow 00:39:20.850$ selection right around the middle of the gene.

 $00:39:20.850 \longrightarrow 00:39:23.060$ And this is visible in currents because

 $00:39:23.060 \longrightarrow 00:39:25.690$ of a number of changes that occur

 $00:39:25.690 \rightarrow 00:39:28.280$ in one particular domain of the gene here.

00:39:28.280 --> 00:39:30.370 Now, if you look at just the replacement divergence,

 $00:39:30.370 \longrightarrow 00:39:32.176$ you wouldn't be able to figure this out.

 $00:39:32.176 \longrightarrow 00:39:33.710$ Because you see there are other

 $00{:}39{:}33{.}710 \dashrightarrow 00{:}39{:}34{.}722$ peaks along here.

 $00:39:34.722 \dashrightarrow 00:39:36.180$ Those don't turn out to be so important.

 $00:39:36.180 \dashrightarrow 00:39:37.960$ And the reason why they don't turn out to be so important

 $00{:}39{:}39{.}206$ --> $00{:}39{:}40{.}820$ is that the synonymous divergence synonymous by morphism

 $00:39:40.820 \rightarrow 00:39:42.110$ replacement polymorphism.

 $00:39:42.110 \rightarrow 00:39:44.370$ Tell us more about the underlying mutation rate

 $00{:}39{:}44{.}370 \dashrightarrow 00{:}39{:}46{.}650$ that says those elevations are probably have

 $00{:}39{:}46{.}650$ --> $00{:}39{:}49{.}300$ something to do with mutation rate, and not necessarily

 $00:39:49.300 \longrightarrow 00:39:52.340$ to do with added divergence.

 $00{:}39{:}52{.}340 \dashrightarrow 00{:}39{:}53{.}860$ You can sort of see this elevation

 $00:39:53.860 \rightarrow 00:39:55.940$ on the right hand side over here compared

00:39:55.940 - > 00:39:58.930 to the small dip right here and up here

 $00:39:58.930 \rightarrow 00:40:01.803$ and the way it all works out mathematically

 $00{:}40{:}01{.}803 \dashrightarrow 00{:}40{:}04{.}110$ is we can really see that there's strong selection here.

 $00{:}40{:}04{.}110$ --> $00{:}40{:}06{.}230$ We can also get what I call model intervals for this.

 $00:40:06.230 \longrightarrow 00:40:08.010$ If you look across all the models,

 $00:40:08.010 \rightarrow 00:40:10.580$ what are the estimates of selection?

 $00{:}40{:}10.580 \dashrightarrow 00{:}40{:}14.480$ Possibly, what do we get is the 95% model interval for this?

 $00:40:14.480 \rightarrow 00:40:17.391$ And that's what these very faint gray lines you

 $00{:}40{:}17.391 \dashrightarrow 00{:}40{:}18.910$ may be able to see are those allow us to detect whether

 $00:40:18.910 \rightarrow 00:40:21.560$ these are significant, least significant,

 $00:40:21.560 \rightarrow 00:40:24.080$ statistically significant differences in selection.

 $00{:}40{:}24.080 \dashrightarrow 00{:}40{:}26.650$ All right, I'm gonna skip through this

 $00{:}40{:}26.650 \dashrightarrow 00{:}40{:}28.572$ just because I want to spend the time

 $00:40:28.572 \rightarrow 00:40:29.405$ but the point is, you can do this for other genes,

 $00:40:29.405 \longrightarrow 00:40:31.530$ and it shows similar results that allow us

 $00{:}40{:}31{.}530$ --> $00{:}40{:}34{.}324$ to understand where sites are under selection in that gene.

00:40:34.324 --> 00:40:36.920 I'll just cover a few more examples

 $00:40:36.920 \longrightarrow 00:40:38.970$ of how we've used this to give you an idea

 $00{:}40{:}38{.}970$ --> $00{:}40{:}41{.}740$ of what it can look like in a comparison between humans

 $00{:}40{:}41{.}740$ --> $00{:}40{:}43{.}870$ and chimpanzees where we've run this just to understand

 $00:40:43.870 \rightarrow 00:40:45.973$ how we've diverged from chimpanzees.

 $00{:}40{:}46{.}870 \dashrightarrow 00{:}40{:}49{.}660$ We see a bunch of different examples here.

 $00:40:49.660 \rightarrow 00:40:51.530$ Again, doing a little bit of comparison to

 $00{:}40{:}51{.}530 \dashrightarrow 00{:}40{:}54{.}066$ that traditional McDonald kreitman test

 $00{:}40{:}54.066 \dashrightarrow 00{:}40{:}55.640$ and the mass PRF test.

 $00{:}40{:}55{.}640 \dashrightarrow 00{:}40{:}59{.}995$ Here you see a gene, which is statistically significant

 $00:40:59.995 \longrightarrow 00:41:01.246$ people's point of view.

 $00:41:01.246 \rightarrow 00:41:03.640$ Based on the Mk tests, the four categories

 $00:41:03.640 \longrightarrow 00:41:06.780$ of the four tallies of which are indicated here.

00:41:06.780 --> 00:41:09.710 Here's the MASS -PRF profile, and it shows us again

 $00{:}41{:}09{.}710 \dashrightarrow 00{:}41{:}11{.}880$ a particular region within this SLC AA

 $00:41:11.880 \longrightarrow 00:41:14.110$ one gene that is under selection.

00:41:14.110 --> 00:41:17.106 There are interesting stories behind all of these,

 $00{:}41{:}17.106$ --> $00{:}41{:}18.523$ but I'm not gonna take the time to go through them.

00:41:19.440 --> 00:41:21.800 Here's another example where and this is an example

 $00:41:21.800 \rightarrow 00:41:23.450$ where the McDonald pregnant test

 $00:41:23.450 \longrightarrow 00:41:24.790$ comes out is not significant.

 $00:41:24.790 \rightarrow 00:41:26.450$ There's just not that much divergence

 $00:41:26.450 \rightarrow 00:41:28.060$ compared to the other categories.

00:41:28.060 --> 00:41:31.640 But if you do this, spatially with the MASS-PRF test,

 $00:41:31.640 \rightarrow 00:41:34.010$ you actually see that a very central region there

00:41:34.010 --> 00:41:37.200 has very strong selection, and then the rest of the gene

 $00{:}41{:}37{.}200 \dashrightarrow 00{:}41{:}40{.}640$ is under almost zero selection or almost no selection.

 $00{:}41{:}40.640 \dashrightarrow 00{:}41{:}42.660$ So this is an example I talked about,

 $00:41:42.660 \rightarrow 00:41:44.660$ where you could have some very small portion

 $00:41:44.660 \rightarrow 00:41:46.580$ of the gene under very strongest selection.

00:41:46.580 --> 00:41:49.136 And McDonald-Kreitman test wouldn't detect it

 $00{:}41{:}49{.}136 \dashrightarrow 00{:}41{:}50{.}910$ because it's averaging over the entire gene.

00:41:50.910 --> 00:41:52.350 Similarly, you'll get some genes.

 $00{:}41{:}52{.}350 \dashrightarrow 00{:}41{:}53{.}950$ Oops, I didn't mean to do that.

00:41:53.950 --> 00:41:58.200 Some jeans, here's M gamma over here, where there's a...

 $00:41:58.200 \longrightarrow 00:41:59.270$ Well, let me turn to that one last.

00:41:59.270 --> 00:42:01.580 Actually, let me look at TPH First,

 $00{:}42{:}01{.}580 \dashrightarrow 00{:}42{:}06{.}340$ there's no statistical selection according to the Mk tests.

00:42:06.340 --> 00:42:07.810 And in fact, in our MASS-PRF,

 $00:42:07.810 \longrightarrow 00:42:09.240$ there's no specific selection either

 $00:42:09.240 \rightarrow 00:42:12.440$ the error bars are entirely overlapping zero here,

 $00:42:12.440 \longrightarrow 00:42:14.590$ which indicates no selection.

00:42:14.590 --> 00:42:16.180 Lastly, here's M gamma.

 $00:42:16.180 \longrightarrow 00:42:18.370$ This is the one of the very few examples

 $00{:}42{:}18.370$ --> $00{:}42{:}21.369$ we were able to find where McDonald test did detect

 $00:42:21.369 \rightarrow 00:42:23.740$ selection where, where MASS-PRF didn't.

 $00:42:23.740 \rightarrow 00:42:25.620$ As you can see, there's quite high tallies here,

 $00:42:25.620 \longrightarrow 00:42:27.080$ which means there's a lot of power

 $00:42:27.080 \rightarrow 00:42:28.389$ to detect selection if it's there,

00:42:28.389 --> 00:42:30.040 but it's probably not very strong,

 $00:42:30.040 \longrightarrow 00:42:31.880$ because the numbers are not all that different

 $00:42:31.880 \longrightarrow 00:42:32.723$ from each other.

 $00{:}42{:}34{.}364$ --> $00{:}42{:}36{.}250$ And McDonald-Kreitman says it's statistically significant.

00:42:36.250 --> 00:42:38.600 Now the reason why McDonald Kreitman is telling

 $00:42:39.502 \rightarrow 00:42:40.820$ it's statistic's nothing compared to mass PRF

 $00{:}42{:}40{.}820$ --> $00{:}42{:}43{.}940$ is that actually, I didn't explain this in detail to you.

 $00:42:43.940 \rightarrow 00:42:46.540$ But McDonald- Kreitman doesn't actually assume $00:42:46.540 \rightarrow 00:42:48.370$ that there's an elevation of rate here.

 $00:42:48.370 \rightarrow 00:42:50.830$ And so the significance here is actually driven by

 $00:42:50.830 \rightarrow 00:42:53.310$ the high polymorphic replacement level.

 $00{:}42{:}53{.}310$ --> $00{:}42{:}55{.}800$ So there's a lot of polymorphic replacements in there.

 $00{:}42{:}55{.}800 \dashrightarrow 00{:}42{:}58{.}450$ And what that means is there's some other

 $00:42:59.641 \longrightarrow 00:43:00.900$ kind of selection that isn't a directional selection.

 $00:43:00.900 \rightarrow 00:43:02.270$ I won't go into the details there.

 $00:43:02.270 \rightarrow 00:43:04.380$ But the nice thing is that in the examples

00:43:04.380 --> 00:43:06.740 where we find that McDonald kreitman is statistically

00:43:06.740 --> 00:43:09.790 significant and MASS-PRF isn't examples

 $00:43:09.790 \longrightarrow 00:43:11.970$ where in fact MASS-PRF is not designed to detect

 $00:43:11.970 \rightarrow 00:43:14.063$ that kind of selection and MK test is.

 $00{:}43{:}15{.}300 \dashrightarrow 00{:}43{:}18{.}138$ In general MASS-PRF turned out to be significant

 $00:43:18.138 \rightarrow 00:43:21.207$ in almost every case math MK tests were not.

00:43:21.207 --> 00:43:23.610 Okay, so how can we use this, apply this

 $00{:}43{:}23.610 \dashrightarrow 00{:}43{:}26.880$ to instances like COVID-19, the point of this whole talk,

 $00:43:26.880 \rightarrow 00:43:29.130$ and I'm just gonna give you one example first

00:43:30.085 - 00:43:32.128 to justify why we think it's a good idea,

 $00:43:32.128 \rightarrow 00:43:33.844$ because we don't have results on doing it,

00:43:33.844 --> 00:43:35.790 at least not many results on doing it to COVID-19

 $00{:}43{:}35{.}790$ --> $00{:}43{:}38{.}810$ yet, and that is that we applied this influenza before,

 $00{:}43{:}38{.}810 \dashrightarrow 00{:}43{:}42{.}970$ which has some similarities to COVID-19, as every one knows

 $00{:}43{:}42{.}970 \dashrightarrow 00{:}43{:}46{.}370$ and in influenza, again, we're interested in looking across

 $00:43:46.370 \longrightarrow 00:43:48.340$ the gene are there sites that are under selection

 $00:43:48.340 \longrightarrow 00:43:50.380$ because those sites that are under selection

 $00:43:50.380 \rightarrow 00:43:53.480$ are candidates where we need to be aware that

 $00{:}43{:}53{.}480$ --> $00{:}43{:}56{.}600$ in fact, vaccines need like for every year they design

00:43:57.554 --> 00:43:58.387 a new influenza vaccine, right?

 $00:43:58.387 \rightarrow 00:43:59.910$ And what they're trying to do is accommodate

 $00{:}43{:}59{.}910 \dashrightarrow 00{:}44{:}02{.}500$ the fact that these changes occur on the sites

 $00:44:02.500 \rightarrow 00:44:04.430$ that are actually susceptible

 $00{:}44{:}04{.}430 \dashrightarrow 00{:}44{:}08{.}430$ to your immune system recognizing the influenza virus.

 $00{:}44{:}08{.}430$ --> $00{:}44{:}10{.}590$ So we need to understand those sites that are changing

 $00{:}44{:}10.590 \dashrightarrow 00{:}44{:}13.390$ and where they are in in order to design

 $00{:}44{:}13{.}390 \dashrightarrow 00{:}44{:}16{.}060$ more universal vaccines that may be could target sites

 $00{:}44{:}16.060$ --> $00{:}44{:}18.880$ that won't change rapidly because they can't change

 $00{:}44{:}18.880$ --> $00{:}44{:}21.870$ because they're structurally constrained in the virus.

 $00{:}44{:}21.870$ --> $00{:}44{:}25.312$ So what we did was apply this MASS-PRF approach

 $00:44:25.312 \rightarrow 00:44:28.950$ to influenza similarly on a phylogeny

00:44:28.950 --> 00:44:30.350 to like I described for Coronavirus.

 $00:44:30.350 \rightarrow 00:44:32.550$ I don't have the phylogeny in the slide set,

 $00{:}44{:}33{.}400 \dashrightarrow 00{:}44{:}36{.}280$ but the point is just looking at the ancestral influenza

00:44:36.280 --> 00:44:40.110 and it's divergent sites within a particular region.

00:44:40.110 --> 00:44:42.850 And what we were able to do is identify a set of sites

 $00:44:42.850 \rightarrow 00:44:45.600$ that are under select---ion using mass PRF

 $00:44:45.600 \rightarrow 00:44:47.930$ that are beyond what people had prophesied

 $00:44:47.930 \rightarrow 00:44:49.920$ as positive selection sites in the past.

 $00:44:49.920 \rightarrow 00:44:52.630$ So there's a paper by Westgeest al 2012

 $00:44:52.630 \rightarrow 00:44:55.350$ which is essentially the gold standard for this

 $00:44:55.350 \rightarrow 00:44:57.830$ and they found a bunch of sites that are all

00:44:57.830 --> 00:45:00.120 these circled sites in gray MASS-PRF.

 $00:45:00.120 \rightarrow 00:45:02.590$ Also found those the orange diagram here

 $00:45:02.590 \longrightarrow 00:45:06.570$ is the MASS-PRF for this gene.

 $00{:}45{:}08{.}550 \dashrightarrow 00{:}45{:}10{.}140$ And it also identified other sites

 $00{:}45{:}10{.}140 \dashrightarrow 00{:}45{:}11{.}790$ that are under selection as well.

 $00:45:13.756 \rightarrow 00:45:15.931$ And we're in the process of understanding

00:45:15.931 - > 00:45:17.040 better how those can be validated.

 $00{:}45{:}17.040 \dashrightarrow 00{:}45{:}19.860$ But the ultimate point is that

 $00{:}45{:}19{.}860$ --> $00{:}45{:}24{.}540$ these are important selected sites that may be relevant

 $00:45:24.540 \longrightarrow 00:45:28.080$ to the design of vaccines for influenza.

00:45:28.080 --> 00:45:29.930 So similarlY, we'd like to illuminate

 $00:45:30.913 \rightarrow 00:45:33.710$ which sites might be changing rapidly

 $00:45:33.710 \rightarrow 00:45:36.083$ and under positive selection in Coronavirus,

00:45:37.241 --> 00:45:38.913 not only during the human epidemic,

00:45:38.913 --> 00:45:40.930 but again during the zonotic zoonotic time period.

 $00:45:40.930 \rightarrow 00:45:42.670$ And so now we're finally coming to the final

 $00:45:42.670 \rightarrow 00:45:45.530$ part of my talk, which is what we're doing

 $00:45:45.530 \longrightarrow 00:45:48.440$ in terms of the model average estimation the mcos

 $00:45:48.440 \rightarrow 00:45:51.072$ and natural selection in SARS coronavirus,

 $00:45:51.072 \rightarrow 00:45:52.553$ one and SARS coronavirus two,

 $00:45:52.553 \rightarrow 00:45:53.400$ Corona viruses during zoonosis.

 $00:45:53.400 \rightarrow 00:45:55.521$ But the whole point here is really

 $00{:}45{:}55{.}521 \dashrightarrow 00{:}45{:}56{.}730$ explain to you what I've done because the results I have

 $00{:}45{:}56{.}730 \dashrightarrow 00{:}46{:}00{.}696$ as I said are I just have a few plots of some of the stuff

 $00:46:00.696 \rightarrow 00:46:02.559$ longest selection we were able to check

 $00{:}46{:}02{.}559$ --> $00{:}46{:}04{.}619$ because we have to process through a lot more data

 $00{:}46{:}04{.}619 \dashrightarrow 00{:}46{:}06{.}679$ before we get a more in depth look at the lesser

 $00{:}46{:}06{.}679 \dashrightarrow 00{:}46{:}10{.}130$ selected sites that are on these genes.

 $00:46:10.130 \rightarrow 00:46:13.400$ And so we looked at this for the for Coronavirus.

 $00:46:13.400 \rightarrow 00:46:17.110$ This is just a Coronavirus, Getty image that Yale

 $00:46:17.110 \longrightarrow 00:46:20.453$ has used looking at Coronavirus.

00:46:21.450 --> 00:46:23.010 And again, as I mentioned,

 $00{:}46{:}23.010 \dashrightarrow 00{:}46{:}26.170$ we're looking at these two sites of where COVID-19

 $00{:}46{:}26.170$ --> $00{:}46{:}30.100$ emergence occurred, and where SARS emergence occurred.

 $00:46:30.100 \longrightarrow 00:46:31.960$ And the question is, are there changes

 $00:46:32.855 \rightarrow 00:46:34.010$ that happen there that are specifically

 $00{:}46{:}34.010$ --> $00{:}46{:}37.870$ responsible perhaps for those zoonosis and the only results

 $00{:}46{:}37.870 \dashrightarrow 00{:}46{:}40.230$ I have are just a few results again, highlighting some of

 $00:46:40.230 \dashrightarrow 00:46:42.340$ the strongest selection we saw.

 $00:46:42.340 \rightarrow 00:46:44.190$ This is actually a diagram of the spike

 $00{:}46{:}44{.}190{\:-}{>}00{:}46{:}46{.}880$ protein which if you've heard much about COVID-19

 $00{:}46{:}46{.}880$ --> $00{:}46{:}49{.}430$ molecular biology, you probably have heard about the spike

 $00:46:50.361 \rightarrow 00:46:52.412$ protein, it's what sticks out from the virus.

 $00:46:52.412 \rightarrow 00:46:55.530$ It's what grabs onto the AC receptor,

 $00:46:55.530 \rightarrow 00:46:58.330$ and essentially is what most vaccines

 $00{:}46{:}58{.}330 \dashrightarrow 00{:}47{:}01{.}360$ that one might design for the virus would target.

 $00:47:01.360 \rightarrow 00:47:04.400$ And the point is that the recombination binding

 $00{:}47{:}04{.}400$ --> $00{:}47{:}07{.}127$ domain, which has gotten a lot of press already turns out

 $00{:}47{:}07.127 \dashrightarrow 00{:}47{:}07.960$ to have the selected sites.

 $00{:}47{:}07{.}960 \dashrightarrow 00{:}47{:}11{.}540$ You can see them here, here, here and here.

 $00:47:11.540 \rightarrow 00:47:12.567$ These are sites that are selected,

 $00:47:12.567 \rightarrow 00:47:13.400$ meaning they're changing rapidly

 $00:47:13.400 \longrightarrow 00:47:16.750$ during the pre zoonotic phase.

 $00{:}47{:}16.750$ --> $00{:}47{:}19.350$ So these are sites that are changing, not in humans,

 $00:47:20.410 \longrightarrow 00:47:21.620$ but in the bats in the pangolins.

 $00:47:21.620 \longrightarrow 00:47:24.580$ And whatever other animals that this virus

00:47:24.580 --> 00:47:27.487 is spreading among, or has been spreading among

 $00:47:27.487 \longrightarrow 00:47:28.680$ before the zoonosis to humans.

 $00:47:28.680 \rightarrow 00:47:29.888$ So then the question is, are similar sites under

 $00:47:29.888 \longrightarrow 00:47:30.721$ selection during zoonosis?

00:47:30.721 --> 00:47:35.560 And during post zoonosis?

 $00:47:35.560 \rightarrow 00:47:37.610$ And the answer right now is yes,

 $00:47:37.610 \longrightarrow 00:47:38.720$ it seems kind of similar,

 $00:47:38.720 \longrightarrow 00:47:40.060$ although we don't get the same sites.

 $00{:}47{:}40.060 \dashrightarrow 00{:}47{:}42.149$ So we have to do a little bit

 $00{:}47{:}42.149$ --> $00{:}47{:}43.830$ more molecular, you know, staring at this and understanding

 $00:47:43.830 \rightarrow 00:47:46.313$ it because these results are literally $00:47:46.313 \rightarrow 00:47:47.676$ I got these results today, actually. 00:47:47.676 - 00:47:50.260 So we have to sort of do more of this $00:47:51.165 \rightarrow 00:47:52.630$ and we actually can actually look at more depth $00:47:53.508 \rightarrow 00:47:54.530$ and get more sites with other approaches $00:47:54.530 \rightarrow 00:47:57.290$ that we haven't implemented at this moment. $00:47:57.290 \rightarrow 00:47:58.123$ But during near zoonosis what you see is again, $00:47:58.123 \rightarrow 00:48:03.020$ the selected sites which are in bright red $00:48:06.387 \rightarrow 00:48:08.267$ are also on the sort of the visible side $00:48:08.267 \rightarrow 00:48:10.350$ of the recombination binding domain $00:48:12.796 \rightarrow 00:48:17.380$ of the spike protein, which is the tip $00:48:17.380 \longrightarrow 00:48:21.363$ the outside portion of this gene. $00:48:22.742 \rightarrow 00:48:24.100$ Lastly, if we look post-zoonosis that's in $00:48:24.100 \rightarrow 00:48:26.400$ the evolution of humans, we again see that $00:48:26.400 \rightarrow 00:48:30.043$ the selected sites are sites that are at this tip region. $00:48:32.585 \rightarrow 00:48:34.615$ Again, none of this is terribly surprising. $00:48:34.615 \rightarrow 00:48:36.378$ The interesting thing is that it kind of indicates $00:48:36.378 \rightarrow 00:48:37.700$ that the zoonosis it kind of indicates consistency. 00:48:37.700 --> 00:48:40.061 Again, there's a lot more to do before $00:48:40.061 \rightarrow 00:48:41.547$ we can conclude anything like this, $00:48:41.547 \rightarrow 00:48:43.610$ but the idea we have right now indicates $00:48:43.610 \rightarrow 00:48:46.250$ a good deal of consistency between the selection $00:48:46.250 \rightarrow 00:48:50.570$ that's ongoing in humans during zoonosis and pre zoonosis. $00:48:50.570 \rightarrow 00:48:52.960$ And what that implies is that this may $00:48:53.865 \rightarrow 00:48:55.520$ well have been as I said, very briefly, $00:48:55.520 \rightarrow 00:48:58.930$ during this talk an instance where there's a virus $00:48:59.950 \rightarrow 00:49:01.020$ just circulating around in bats and penguins $00:49:01.020 \rightarrow 00:49:03.580$ that could have caused this disease at any time, $00:49:03.580 \rightarrow 00:49:06.560$ it's just a matter of whether or not we actually

 $00:49:06.560 \rightarrow 00:49:10.990$ have exposure to, to those organisms

 $00:49:10.990 \rightarrow 00:49:13.590$ that allows the transmission to happen.

 $00:49:13.590 \rightarrow 00:49:15.540$ Consistent with this, I'll just mention

 $00:49:17.058 \longrightarrow 00:49:18.352$ a couple like verbal points,

00:49:18.352 --> 00:49:20.447 which is that all the evidence that we have indicates

 $00:49:20.447 \rightarrow 00:49:23.150$ that this virus spread extremely quickly

 $00:49:23.150 \rightarrow 00:49:26.010$ from the moment that it zoonosis into humans.

00:49:26.010 --> 00:49:28.190 And in fact, in most cases of zoonosis,

 $00:49:28.190 \longrightarrow 00:49:29.440$ we find that that's true,

 $00:49:30.839 \rightarrow 00:49:32.510$ which is somewhat counterintuitive.

00:49:32.510 - 00:49:34.157 Obviously, it hasn't adapted to humans,

 $00{:}49{:}34{.}157 \dashrightarrow 00{:}49{:}37{.}003$ it has adapted to the amount of mammalian immune system.

00:49:37.003 --> 00:49:38.893 And so to the extent that our immune system is not

 $00{:}49{:}38{.}893 \dashrightarrow 00{:}49{:}40{.}730$ tremendously different from that of bats or pangolins,

 $00:49:40.730 \rightarrow 00:49:43.670$ it may be not surprising that it can infect us.

 $00:49:43.670 \longrightarrow 00:49:46.619$ But one of the things that is true is that

 $00:49:46.619 \longrightarrow 00:49:47.780$ if it did not spread very quickly,

 $00{:}49{:}47{.}780$ --> $00{:}49{:}50{.}720$ very easily from the very moment it transmitted to someone,

 $00:49:50.720 \dashrightarrow 00:49:52.330$ it would probably lead to a dead end.

 $00:49:52.330 \longrightarrow 00:49:54.810$ In other words, if you don't have

 $00{:}49{:}54{.}810$ --> $00{:}49{:}57{.}163$ an ability to transmit and spread just from the get go,

 $00:49:57.163 \rightarrow 00:49:59.630$ the first person who gets infected

 $00:49:59.630 \rightarrow 00:50:02.140$ is very unlikely to transmit it to someone else.

 $00:50:02.140 \longrightarrow 00:50:04.330$ So it sort of has to be well pre adapted

 $00:50:04.330 \rightarrow 00:50:07.120$ for a zoonotic event to actually spread in humans.

 $00:50:07.120 \rightarrow 00:50:09.273$ Now there's, we need more zoonotic events,

 $00:50:10.816 \rightarrow 00:50:11.649$ God forbid that it actually happens,

 $00:50:13.440 \rightarrow 00:50:15.064$ to really get a better picture of that.

 $00:50:15.064 \rightarrow 00:50:15.897$ But the general result and the scientific

 $00{:}50{:}15{.}897 \dashrightarrow 00{:}50{:}18{.}091$ literature does seem to show that zoonosis happens.

 $00:50:18.091 \rightarrow 00:50:22.360$ the disease's already well set to cause problems.

 $00:50:22.360 \rightarrow 00:50:23.770$ And the examples that we don't have where

 $00:50:23.770 \longrightarrow 00:50:25.340$ it happens like that, like MERS

00:50:26.886 --> 00:50:28.786 or like, well, MERS is a good example.

 $00:50:29.869 \rightarrow 00:50:31.031$ It's a really deadly disease,

 $00:50:31.031 \rightarrow 00:50:31.980$ but it doesn't transmit well among humans.

 $00{:}50{:}31{.}980 \dashrightarrow 00{:}50{:}34{.}720$ And so that's an example where may be it's transmitting

 $00{:}50{:}34{.}720$ --> $00{:}50{:}37{.}210$ to humans, but it's not transmitting among humans.

 $00:50:37.210 \rightarrow 00:50:38.960$ And it's very hard for that disease

 $00:50:40.067 \rightarrow 00:50:42.017$ to catch on within the human population

 $00{:}50{:}43.194 \dashrightarrow 00{:}50{:}45.229$ and do human transmission as opposed to zoonotic events.

 $00{:}50{:}45{.}229 \dashrightarrow 00{:}50{:}46{.}592$ And that's because it doesn't transmit

 $00:50:46.592 \rightarrow 00:50:48.342$ and it doesn't usually evolve that ability

 $00{:}50{:}48{.}342 \dashrightarrow 00{:}50{.}50{.}650$ to transmit over the short time that

 $00:50:50.650 \dashrightarrow 00:50:53.280$ that individuals might get infected.

 $00:50:53.280 \rightarrow 00:50:56.880$ when when they get it usually from camels.

 $00:50:56.880 \rightarrow 00:50:59.000$ Okay, so I've showed you those examples.

 $00{:}50{:}59{.}000 \dashrightarrow 00{:}51{:}01{.}780$ I just wanna to mention what else we're gonna be doing.

00:51:01.780 --> 00:51:03.780 So I what I just showed you was actually

 $00:51:04.668 \rightarrow 00:51:06.420$ the sort of SARS coronavirus to some sites

 $00{:}51{:}06{.}420 \dashrightarrow 00{:}51{:}07{.}990$ that are under selection in search

 $00:51:07.990 \longrightarrow 00:51:09.570$ for Coronavirus two genes.

00:51:09.570 - 00:51:12.031 This is the S gene right here.

 $00{:}51{:}12.031 \dashrightarrow 00{:}51{:}12.864$ That's the spike gene.

 $00{:}51{:}12.864 \dashrightarrow 00{:}51{:}14.710$ We're gonna be looking at that in SARS coronavirus,

 $00:51:14.710 \rightarrow 00:51:17.530$ one and two, we're also going to be looking

 $00:51:17.530 \rightarrow 00:51:21.660$ at other genes in the genomes.

 $00:51:21.660 \longrightarrow 00:51:22.960$ These have other functions.

 $00:51:22.960 \rightarrow 00:51:26.142$ The M gene, for instance, is a membrane gene.

 $00:51:26.142 \longrightarrow 00:51:27.990$ So it might be relevant to and the gene

 $00:51:27.990 \rightarrow 00:51:32.290$ as well might be relevant to vaccine generation.

 $00:51:32.290 \rightarrow 00:51:34.610$ Like if we could generate a vaccine that targeted

 $00{:}51{:}34{.}610$ --> $00{:}51{:}37{.}560$ those, maybe they would be unable to change at the same

 $00{:}51{:}41{.}249 \dashrightarrow 00{:}51{:}44{.}045$ pace that spike protein would they might be more conserved.

 $00{:}51{:}44.045 \dashrightarrow 00{:}51{:}44.878$ And that might be one approach towards developing a vaccine.

 $00{:}51{:}46{.}312 \dashrightarrow 00{:}51{:}47{.}145$ That would be a longer term vaccine because one thing we

 $00{:}51{:}48{.}726$ --> $00{:}51{:}50{.}193$ have to worry about, of course with this Coronavirus,

 $00:51:53.186 \rightarrow 00:51:55.378$ is and I have other research that we're doing on

 $00{:}51{:}55{.}378 \dashrightarrow 00{:}51{:}57{.}275$ this question, which I'd love to talk about if any one's

 $00:51:57.275 \longrightarrow 00:51:58.771$ curious, but you can estimate

 $00:51:58.771 \rightarrow 00:52:00.152$ what the actual waning immunity of it is,

 $00{:}52{:}00{.}152 \dashrightarrow 00{:}52{:}00{.}985$ even though we don't have data on that by Looking

 $00{:}52{:}03{.}422 \dashrightarrow 00{:}52{:}05{.}180$ at other related species and using the phylogeny

 $00:52:05.180 \rightarrow 00:52:07.970$ to understand how the how the waning immunity

 $00:52:07.970 \longrightarrow 00:52:09.380$ has evolved across the species

 $00:52:09.380 \rightarrow 00:52:11.230$ and what the projected or most likely

00:52:12.158 --> 00:52:13.463 waning immunity of SARS coronavirus is,

 $00:52:14.600 \rightarrow 00:52:16.403$ and it's, it tends to be it looks like

 $00:52:16.403 \longrightarrow 00:52:17.746$ it's around 80 weeks or so.

00:52:17.746 --> 00:52:20.815 So if we get about 8 weeks of waiting a period

 $00:52:20.815 \longrightarrow 00:52:22.120$ of immunity from this, that's not that

 $00{:}52{:}22{.}120 \dashrightarrow 00{:}52{:}24{.}750$ much in terms of every two years or so we're gonna have

 $00{:}52{:}24.750 \dashrightarrow 00{:}52{:}27.540$ Coronavirus coming around and in terms of we're going to

 $00:52:27.540 \rightarrow 00:52:29.340$ be susceptible again to Coronavirus.

 $00:52:30.287 \rightarrow 00:52:31.120$ Not that we're going to get it every two years.

 $00{:}52{:}33{.}436 \dashrightarrow 00{:}52{:}36{.}245$ And what that would mean is that

 $00:52:36.245 \rightarrow 00:52:38.088$ it's likely to persist as a circulating virus.

 $00{:}52{:}38{.}088 \dashrightarrow 00{:}52{:}39{.}839$ And if it remains as deadly as it is that's a serious issue.

 $00:52:39.839 \rightarrow 00:52:41.544$ So we're gonna really want to buy a vaccine.

00:52:41.544 --> 00:52:43.460 And we're not necessarily going to wanna have another flu

 $00:52:44.334 \rightarrow 00:52:45.213$ vaccine that we have to get every year.

 $00:52:48.661 \rightarrow 00:52:50.632$ So what we really want to do is target

 $00:52:50.632 \rightarrow 00:52:52.570$ some genes that may be under more constraint

 $00{:}52{:}52{.}570 \dashrightarrow 00{:}52{:}55{.}630$ then the recombination binding protein gene, the spike gene.

 $00{:}52{:}56{.}508 \dashrightarrow 00{:}52{:}58{.}280$ So anyway, so the point is looking at multiple genes for

 $00{:}52{:}59{.}738 \dashrightarrow 00{:}53{:}01{.}410$ trying to understand where conservative regions are where

 $00:53:02.809 \rightarrow 00:53:03.873$ regions that are under selection are important.

 $00:53:05.224 \rightarrow 00:53:06.848$ And we'll be doing that.

 $00:53:06.848 \rightarrow 00:53:10.625$ And hopefully some of those results will

 $00:53:10.625 \rightarrow 00:53:14.507$ help to guide the kind of generation of vaccines,

 $00:53:14.507 \rightarrow 00:53:16.374$ and also the generation of the rapeutics,

 $00:53:16.374 \longrightarrow 00:53:18.642$ because sites that are under

 $00:53:18.642 \longrightarrow 00:53:19.866$ selection are functional.

 $00:53:19.866 \rightarrow 00:53:20.892$ So if you actually design a therapeutic

 $00{:}53{:}20{.}892 \dashrightarrow 00{:}53{:}22{.}418$ that interferes with the sites that are under selection

00:53:22.418 --> 00:53:24.513 sort of in an opposite way, from vaccines, vaccines,

 $00{:}53{:}24{.}513$ --> $00{:}53{:}26{.}041$ we really want to target something that just doesn't change.

 $00:53:26.041 \rightarrow 00:53:27.058$ With the rapeutics, we may want to target

 $00:53:27.058 \rightarrow 00:53:29.586$ the changing regions, if we can design something

 $00:53:29.586 \rightarrow 00:53:31.385$ that generically does, because those changing

00:53:31.385 - 00:53:32.314 regions are functional.

 $00{:}53{:}32{.}314$ --> $00{:}53{:}33{.}147$ In other words, those sites at the end of the spike protein

 $00:53:33.147 \rightarrow 00:53:35.440$ are clearly ones that do bind the ACE gene.

 $00{:}53{:}35{.}440 \dashrightarrow 00{:}53{:}36{.}990$ It's just that they're flexible

 $00:53:37.939 \rightarrow 00:53:39.383$ about what they are in order to bind it.

 $00:53:41.975 \longrightarrow 00:53:43.240$ So we need to include

 $00{:}53{:}43{.}240$ --> $00{:}53{:}46{.}047$ all of those changing sites, if we wanna dissolve develop

 $00{:}53{:}46.047$ --> $00{:}53{:}50.190$ a the rapeutic that for instance, would somehow interfering

 $00{:}53{:}50{.}190$ --> $00{:}53{:}53{.}459$ with the binding of Ace to receptors from the spike genes.

 $00{:}53{:}53{.}459 \dashrightarrow 00{:}53{:}56{.}223$ So thank you very much for listening to the ongoing work

 $00:53:56.223 \rightarrow 00:53:59.025$ we're doing on COVID-19.

 $00{:}53{:}59{.}025$ --> $00{:}54{:}03{.}124$ I would love to entertain any questions that you have.

 $00:54:03.124 \rightarrow 00:54:04.888$ Let me just take one moment to acknowledge

 $00{:}54{:}04.888$ --> $00{:}54{:}09.427$ some of the people that I should acknowledge in this work,

 $00{:}54{:}09{.}427 \dashrightarrow 00{:}54{:}11{.}421$ I already showed you a picture of John John who was earlier

00:54:11.421 --> 00:54:13.289 the the picture and the associated with the Mac ml approach

 $00{:}54{:}13.289 \dashrightarrow 00{:}54{:}15.317$ that we developed many years ago 10 years ago basically

```
00:54:15.317 \rightarrow 00:54:17.635 Yinfei Wu has been taking the lead on this project.
00:54:17.635 \rightarrow 00:54:19.027 She's a master student.
00:54:19.027 \rightarrow 00:54:21.277 Yano os Wang was an assistant was in visiting
00:54:22.423 --> 00:54:24.204 Assistant Professor Stephen Gaugham,
00:54:24.204 \rightarrow 00:54:25.602 is in the Evie department
00:54:25.602 \rightarrow 00:54:27.587 has been helping out with this analysis.
00:54:27.587 \rightarrow 00:54:29.740 Haley Hassler is in my lab, has been helping out
00:54:29.740 --> 00:54:32.290 with phylogenetics Jayveer Singh is an undergrad
00:54:32.290 \rightarrow 00:54:35.030 who's been doing some of the research work
00:54:35.030 \rightarrow 00:54:37.188 some of the actually literature research
00:54:37.188 \rightarrow 00:54:38.540 that has helped us to contextualize
00:54:38.540 --> 00:54:40.910 the work we're doing Mofeed Najib
00:54:40.910 \rightarrow 00:54:43.760 produced those diagrams of the spike protein
00:54:43.760 \rightarrow 00:54:45.790 with the sites that we have identified
00:54:45.790 \rightarrow 00:54:47.323 as under selection so far,
00:54:48.380 --> 00:54:52.400 Zheng Wang is a long term collaborator of mine
who works
00:54:53.683 \rightarrow 00:54:55.530 on nearly all the phylogenetic projects
00:54:55.530 \rightarrow 00:54:58.670 that I do, who's works with me.
00:54:58.670 \rightarrow 00:55:02.070 And then Alex Thornburg is A long term collab-
orator of mine,
00:55:02.070 \rightarrow 00:55:05.870 now in North Carolina.
00:55:05.870 \rightarrow 00:55:07.950 He was while he's currently at the North Carolina
00:55:07.950 --> 00:55:11.390 Museum of sciences, but he works on a lot of
phylogenetic
00:55:11.390 - 00:55:13.100 projects with me as well.
00:55:13.100 \rightarrow 00:55:15.610 And by the way, all of this, fortunately
00:55:15.610 \rightarrow 00:55:19.120 was recently awarded one of the NSF rapid grants
00:55:19.120 \longrightarrow 00:55:20.060 to do this research.
00:55:20.060 \rightarrow 00:55:21.900 So we're very pleased to have funding to
```

 $00{:}55{:}21{.}900 \dashrightarrow 00{:}55{:}25{.}068$ continue to work on this as time goes on, which is good

 $00:55:25.068 \rightarrow 00:55:26.530$ because it's taking quite a lot of work

 $00:55:27.426 \longrightarrow 00:55:28.283$ to do the sequence wrangling.

 $00:55:29.286 \dashrightarrow 00:55:30.119$ And the analyses themselves.

00:55:30.119 --> 00:55:32.190 As I mentioned, they're computationally intensive.

 $00:55:32.190 \rightarrow 00:55:34.660$ So Alex and I were the PI's on that particular

 $00:55:35.721 \rightarrow 00:55:36.620$ grant from the NSF.

 $00:55:36.620 \rightarrow 00:55:38.870$ So we're excited to continue to do that work.

00:55:40.596 --> 00:55:41.901 And with that, I think I would

 $00:55:41.901 \rightarrow 00:55:42.773$ like to entertain any questions you might have.

00:55:45.045 --> 00:55:46.745 - Thank you, Jeff, this was great.

 $00{:}55{:}47.617 \dashrightarrow 00{:}55{:}49.200$ I'm sure we have a lot of questions

 $00:55:49.200 \longrightarrow 00:55:50.563$ who gets first?

 $00{:}55{:}54{.}490 \dashrightarrow 00{:}55{:}56{.}490$ Again, you can type the questions on the

 $00:55:58.961 \longrightarrow 00:56:00.794$ chat box or just mute.

 $00:56:12.968 \rightarrow 00:56:14.100$ - I have a quick question.

00:56:14.100 --> 00:56:15.764 - Okay.

 $00{:}56{:}15{.}764$ --> $00{:}56{:}19{.}560$ - You mentioned or you touched a bit on this before,

 $00:56:19.560 \rightarrow 00:56:23.600$ but how would this compare to cite wise estimates

 $00{:}56{:}23.600 \dashrightarrow 00{:}56{:}25.500$ of omega that you would get from Pamel

00:56:27.840 --> 00:56:28.673 or similar program?

00:56:28.673 --> 00:56:31.738 - So I'm sorry, I sort of was rushing at the end,

 $00{:}56{:}31{.}738 \dashrightarrow 00{:}56{:}34{.}792$ I didn't explain that, in fact, I'm using pamel for some,

00:56:34.792 --> 00:56:36.169 So I'm using Pamela

 $00{:}56{:}36{.}169$ --> $00{:}56{:}38{.}657$ for the pre zoonosis analysis, and for the post zoonosis

 $00:56:39.615 \rightarrow 00:56:42.893$ analysis, because as I mentioned during the talk,

 $00:56:43.734 \rightarrow 00:56:45.664$ if you have a large phylogeny

 $00:56:45.664 \rightarrow 00:56:47.623$ with multiple branches, et cetera, et cetera,

 $00{:}56{:}49{.}376$ --> $00{:}56{:}50{.}209$ where you can look over that entire phylogeny then you

 $00:56:51.360 \rightarrow 00:56:52.363$ can get multiple changes at individual sites,

 $00{:}56{:}53{.}233$ --> $00{:}56{:}55{.}130$ which is what pamel actually uses to infer selection, right?

 $00:56:55.130 \rightarrow 00:56:57.170$ You have to have the site change not just once

 $00:56:57.170 \longrightarrow 00:56:59.393$ but twice or three times.

 $00:57:01.713 \rightarrow 00:57:02.546$ And then it says all that's under selection because

 $00:57:06.683 \rightarrow 00:57:10.350$ it keeps changing again and again and again.

 $00{:}57{:}11{.}571 \dashrightarrow 00{:}57{:}12{.}959$ So, so Pamela allows you to do that

 $00{:}57{:}12.959 \dashrightarrow 00{:}57{:}15.354$ if you have this sort of deep time

 $00{:}57{:}15{.}354{\:-}{-}{>}00{:}57{:}17{.}232$ or large amount of time and multiple lineages that you're

 $00{:}57{:}17{.}232 \dashrightarrow 00{:}57{:}19{.}275$ looking at, the master of approach that I'm using, enables

 $00{:}57{:}19{.}275$ --> $00{:}57{:}22{.}170$ you to do that on just a single lineage without needing

00:57:22.170 --> 00:57:23.203 multiple changes, I mean, multiple changes

 $00{:}57{:}23.203 \dashrightarrow 00{:}57{:}24.578$ on a single language you can't even detect

 $00:57:24.578 \rightarrow 00:57:25.668$ because it just looks like one change

 $00{:}57{:}25{.}668 \dashrightarrow 00{:}57{:}28{.}135$ if you have the ancestral sequence, which is what we do

 $00{:}57{:}28.135 \dashrightarrow 00{:}57{:}30.634$ ancestral data summation, get the ancestral sequence.

 $00{:}57{:}30{.}634$ --> $00{:}57{:}33{.}227$ And if you have the descendant sequence, a changes

 $00{:}57{:}33{.}227$ --> $00{:}57{:}34{.}714$ to T, you don't know if it changed to A to G to C to T again

 $00{:}57{:}34{.}714$ --> $00{:}57{:}36{.}315$ or if it just changed a to T, you have no idea you can

00:57:36.315 - 00:57:38.047 just say it changed once.

 $00:57:38.047 \rightarrow 00:57:39.753$ And so there's no real way to run pants,

 $00:57:39.753 \rightarrow 00:57:41.159$ there is a way but it's really it's statistically

 $00:57:41.159 \rightarrow 00:57:41.992$ really underpowered terrible thing

 $00:57:41.992 \rightarrow 00:57:44.164$ to do to try to run pamel on a single lineage

 $00{:}57{:}44{.}164 \dashrightarrow 00{:}57{:}46{.}731$ and figure out whether something's under selection.

 $00:57:46.731 \longrightarrow 00:57:49.320$ The advantage of this approach is because it

 $00{:}57{:}49{.}320 \dashrightarrow 00{:}57{:}51{.}382$ can use that polymorphism data, the data of like what's

 $00{:}57{:}51{.}382 \dashrightarrow 00{:}57{:}54{.}072$ just circulating in within populations as a metric for how

 $00:57:54.072 \rightarrow 00:57:55.888$ much mutation is occurring.

 $00:57:55.888 \rightarrow 00:57:59.390$ You can essentially divide out by that

 $00{:}57{:}59{.}390 \dashrightarrow 00{:}58{:}02{.}680$ and then again, because we're integrating over all

 $00{:}58{:}03{.}544$ --> $00{:}58{:}05{.}850$ these models of how these things change, we're essentially

 $00{:}58{:}06{.}879$ --> $00{:}58{:}08{.}930$ borrowing information from neighboring sites for what their

00:58:10.488 --> 00:58:12.837 rates of change are, et cetera et cetera

 $00{:}58{:}12.837 \dashrightarrow 00{:}58{:}13.670$ to estimate what the possible amount

 $00{:}58{:}14.770 \dashrightarrow 00{:}58{:}16.122$ of selection is on all these sites.

 $00{:}58{:}16.122 \dashrightarrow 00{:}58{:}19.263$ So by using the polymorphism data, and by doing this model

 $00:58:19.263 \rightarrow 00:58:21.445$ averaging approach, we're actually able

 $00:58:21.445 \rightarrow 00:58:23.100$ to take individual lineages and estimate

 $00:58:23.100 \longrightarrow 00:58:25.050$ the selection on them.

 $00{:}58{:}25{.}050 \dashrightarrow 00{:}58{:}28{.}880$ And that's what we're doing in the near zonosis analysis

 $00:58:28.880 \rightarrow 00:58:30.730$ that I showed you in the middle here.

 $00:58:32.610 \rightarrow 00:58:33.443$ So there are different ways of doing the analysis.

 $00{:}58{:}34{.}924 \dashrightarrow 00{:}58{:}37{.}174$ And it's necessitated by the fact that we just have this

 $00{:}58{:}37{.}174 \dashrightarrow 00{:}58{:}39{.}146$ one lineage and there's no way it won't be a single lineage

 $00:58:39.146 \rightarrow 00:58:41.884$ in any dataset we look at because for zoonosis,

 $00:58:41.884 \rightarrow 00:58:43.950$ we're going to have human sequences,

 $00:58:43.950 \rightarrow 00:58:44.783$ we're gonna have some animal sequences,

00:58:44.783 --> 00:58:47.722 we're not going to know we're not going

00:58:47.722 --> 00:58:50.010 to have any information about the actual zoonosis. 00:58:50.010 - 00:58:51.600 Even if we knew the first human, $00:58:51.600 \rightarrow 00:58:54.011$ we could just take that as an estimate. $00:58:54.011 \rightarrow 00:58:55.680$ We still probably need some data here. $00:58:55.680 \rightarrow 00:58:57.970$ Maybe you could have the first human $00:58:57.970 \rightarrow 00:58:59.910$ and the first animal that you got it from. $00:58:59.910 \rightarrow 00:59:00.960$ That just doesn't exist. $00:59:00.960 \rightarrow 00:59:03.500$ We don't have that data for any zoonosis. $00:59:03.500 \rightarrow 00:59:06.690$ How would we would never be there at the moment. $00:59:06.690 \rightarrow 00:59:08.710$ So we have to assume that there's a number $00:59:08.710 \rightarrow 00:59:10.400$ of transmissions among humans $00:59:10.400 \rightarrow 00:59:13.164$ and a number of transmissions among animals $00:59:13.164 \rightarrow 00:59:14.090$ during that near zoonotic period. $00:59:14.090 \rightarrow 00:59:15.600$ And it's just a single lineage. $00:59:15.600 \rightarrow 00:59:17.513$ So we can't really run pamel on that, $00:59:19.061 \rightarrow 00:59:21.095$ in summary, because pamel requires multiple $00:59:21.095 \rightarrow 00:59:22.330$ changes multiple lineages to have power $00:59:23.201 \rightarrow 00:59:24.730$ to actually infer evolutionary change. 00:59:24.730 --> 00:59:26.640 MASS-PRF fortunatelY, can do that, $00:59:26.640 \rightarrow 00:59:28.450$ because you can look on single lineages. $00:59:28.450 \rightarrow 00:59:31.270$ So you can use MK tests as well on single lineage $00:59:32.533 \rightarrow 00:59:34.063$ is basically designed to look at single lineages. 00:59:35.544 --> 00:59:36.523 But the problem with MK tests, as I mentioned, $00:59:37.371 \rightarrow 00:59:38.813$ is that they're assuming the entire $00:59:38.813 \rightarrow 00:59:39.910$ gene is under selection, which means it doesn't give you $00:59:41.071 \rightarrow 00:59:43.120$ the scope or understanding about recombination 00:59:44.044 --> 00:59:46.088 binding gene sites under selection or something like that. $00:59:46.088 \rightarrow 00:59:47.440$ It often will just give you a result of the genes not

under

 $00:59:47.440 \longrightarrow 00:59:49.023$ selection, which is not true.

 $00:59:51.386 \rightarrow 00:59:52.219$ - Does that answer your question?

 $00{:}59{:}53{.}599 \dashrightarrow 00{:}59{:}54{.}673$ - Yes.

 $00{:}59{:}54{.}673 \dashrightarrow 00{:}59{:}55{.}506$ - Great.

00:59:59.966 --> 01:00:01.799 - Any other questions?

 $01:00:03.691 \rightarrow 01:00:04.980$ - I have one more if no one else wants to.

01:00:04.980 --> 01:00:06.690 - Sure, go ahead.

01:00:06.690 --> 01:00:10.480 - So in B cells, we have mechanisms

 $01:00:10.480 \rightarrow 01:00:12.560$ that have mutation that specifically

 $01:00:12.560 \rightarrow 01:00:16.637$ bias towards replacement mutations.

 $01:00:16.637 \rightarrow 01:00:18.350$ So in the absence of selection,

 $01{:}00{:}18.350 \dashrightarrow 01{:}00{:}21.050$ the mutation mechanisms actually cause

 $01:00:21.050 \longrightarrow 01:00:22.533$ an Omega greater than one.

 $01:00:24.270 \rightarrow 01:00:27.690$ would this have any way of correcting for that?

01:00:27.690 --> 01:00:30.796 - So the tricky part is, and I don't know how it might,

 $01{:}00{:}30.796$ --> $01{:}00{:}33.062$ the tricky part is not so much running the software,

 $01:00:33.062 \rightarrow 01:00:37.310$ which you could certainly do on that.

01:00:37.310 --> 01:00:38.900 The tricky part would be identifying

 $01:00:38.900 \rightarrow 01:00:43.000$ what polymorphism is, in the case of those cells.

 $01{:}00{:}43.000 \dashrightarrow 01{:}00{:}47.000$ So if you could identify sets of cells that are undergoing

 $01{:}00{:}47.000 \dashrightarrow 01{:}00{:}50.718$ the mutation but aren't under selection in some way, then

 $01{:}00{:}50{.}718$ --> $01{:}00{:}54{.}360$ you could use that as the proxy for the way we use it here

 $01{:}00{:}54.360$ --> $01{:}00{:}57.140$ is polymorphism within population polymorphism,

 $01{:}00{:}57{.}140 \dashrightarrow 01{:}00{:}58{.}290$ and then estimate that.

 $01:00:59.176 \rightarrow 01:01:01.235$ I just don't know whether you have a way of

 $01{:}01{:}01{:}235 \dashrightarrow 01{:}01{:}02.068$ doing Doing that if you want to discuss

 $01:01:02.917 \rightarrow 01:01:04.795$ it with me, we could.

 $01{:}01{:}04{.}795 \dashrightarrow 01{:}01{:}06{.}803$ That's sort of always the key for detecting selection.

01:01:09.279 --> 01:01:11.089 And it's, you know, many of you may be familiar that I work

 $01{:}01{:}11{.}089 \dashrightarrow 01{:}01{:}13{.}463$ on cancer and some of the work that I do.

01:01:13.463 --> 01:01:14.546 It's the same

 $01{:}01{:}17.573$ --> $01{:}01{:}20.593$ problem that I'm working on there all the time, I'm trying

 $01{:}01{:}20.593 \dashrightarrow 01{:}01{:}23.196$ to understand what the baseline mutation rates of cancer

 $01:01:23.196 \rightarrow 01:01:25.181$ in cancer and somatic evolution of cells are.

01:01:25.181 --> 01:01:27.355 Because if I understand the baseline rates

 $01{:}01{:}27.355 \dashrightarrow 01{:}01{:}28.963$, how often those things change,

 $01:01:28.963 \rightarrow 01:01:29.878$ just the mutation alone,

 $01:01:29.878 \rightarrow 01:01:31.722$ then I can always estimate selection.

 $01:01:31.722 \rightarrow 01:01:34.292$ And that's the thing we almost always want to

01:01:34.292 --> 01:01:37.258 know about in the analog analysis of sequence data.

01:01:37.258 --> 01:01:42.217 So, again, it's all about figuring out if there's some piece

 $01{:}01{:}42{.}217$ --> $01{:}01{:}45{.}790$ of the data that can be used to estimate that polymorphism

 $01{:}01{:}45{.}790$ --> $01{:}01{:}47{.}863$ and an approach like this, the benefit of an approach like

01:01:47.863 --> 01:01:50.126 this would be, you know, maybe you can estimate that for

01:01:50.126 --> 01:01:51.799 some portions of the gene, but not others, you know, maybe

 $01{:}01{:}51{.}799 \dashrightarrow 01{:}01{:}53{.}583$ then there's a way that you could use this sort of model

 $01{:}01{:}53.583$ --> $01{:}01{:}55.030$ averaging approach to get at the underlying rate that it's

01:01:55.986 --> 01:01:56.819 happening, even if you can't estimate

 $01{:}01{:}58{.}111 \dashrightarrow 01{:}01{:}58{.}944$ for that particular site, for instance.

 $01:02:00.284 \rightarrow 01:02:02.314$ So I think the Might be potential to do it,

01:02:02.314 --> 01:02:04.408 but it just depends, you know, about on whether 01:02:04.408 --> 01:02:07.430 there's a critical, you know, set of data in what you're

 $01:02:08.990 \rightarrow 01:02:11.624$ looking at which I haven't spent much time

 $01:02:11.624 \rightarrow 01:02:13.218$ looking at back in the day.

01:02:13.218 --> 01:02:14.987 So I wouldn't know whether there's some way

 $01{:}02{:}14.987 \dashrightarrow 01{:}02{:}18.630$ of baseline getting that baseline polymorphism or baseline

 $01{:}02{:}18.630 \dashrightarrow 01{:}02{:}21.633$ mutation rate, which essentially amounts to the same thing.

 $01{:}02{:}22.545$ --> $01{:}02{:}25.559$ It just depends on whether, you know, you're assuming the

01:02:25.559 --> 01:02:28.901 population is sort of has, you know,

 $01{:}02{:}28{.}901 \dashrightarrow 01{:}02{:}31{.}231$ it's just whether you're looking at at a population level,

 $01:02:31.231 \rightarrow 01:02:32.560$ or you have some sort of covariance matrix

 $01:02:33.653 \rightarrow 01:02:35.063$ to better understand the mutation rates itself.

 $01:02:36.180 \rightarrow 01:02:37.513$ - I think there is a similar population B cells,

01:02:37.513 --> 01:02:41.233 - Great, so I encourage you to look into that.

01:02:44.150 --> 01:02:46.570 - Jeff, I have a quick question.

 $01:02:46.570 \rightarrow 01:02:49.600$ I'm not too familiar with genome sequencing.

 $01{:}02{:}49.600 \dashrightarrow 01{:}02{:}52.510$ But I think the Clustering Problem,

 $01:02:52.510 \rightarrow 01:02:55.330$ the issue and the solution you have

 $01{:}02{:}55{.}330 \dashrightarrow 01{:}02{:}58{.}030$ can be applied to many types of data.

 $01:02:58.030 \longrightarrow 01:02:59.370$ So I'm kind of confused.

 $01:02:59.370 \longrightarrow 01:03:01.830$ So you start In the diagram where you describe

 $01{:}03{:}01{.}830 \dashrightarrow 01{:}03{:}05{.}610$ the different steps, you said that you first pick the most

 $01:03:05.610 \longrightarrow 01:03:06.855$ likely cluster and then you essentially

 $01:03:06.855 \dashrightarrow 01:03:09.305$ keep splitting the clusters, right?

01:03:09.305 --> 01:03:11.551 How do you get the first clusters? Like

 $01{:}03{:}11{.}551$ --> $01{:}03{:}16{.}168$ there is some randomness in how you split the first?

01:03:16.168 --> 01:03:18.746 - Oh, so I sorry, I apologize.

01:03:18.746 --> 01:03:22.350 I didn't explain it in enough detail.

01:03:22.350 --> 01:03:24.380 The reason why it's so computationally intensive

 $01:03:24.380 \longrightarrow 01:03:26.668$ is we look at all possible.

 $01:03:26.668 \rightarrow 01:03:28.910$ all possible exhaustedly.

 $01:03:28.910 \rightarrow 01:03:31.330$ Now, I actually spent a year of my life trying

 $01:03:31.330 \rightarrow 01:03:34.070$ to find a way to develop a Bayesian approach

 $01:03:34.070 \rightarrow 01:03:35.870$ or some approach that would allow me

 $01:03:38.006 \rightarrow 01:03:39.880$ to not look at all possible, you know, like to

 $01:03:39.880 \rightarrow 01:03:40.713$ make this because because if you could do that,

 $01{:}03{:}40{.}713{\:-}{>}01{:}03{:}45{.}094$ this would be a great way for doing tons of different things

01:03:45.094 --> 01:03:47.094 on very large data sets, right, large, like,

01:03:47.094 --> 01:03:50.200 and what amazed me is, I found that

 $01:03:50.200 \rightarrow 01:03:53.445$ it was just an impenetrable problem.

01:03:53.445 --> 01:03:55.770 If I didn't look at every possible model.

 $01:03:55.770 \longrightarrow 01:03:59.840$ I could not get it to work I couldn't prove that

 $01{:}03{:}59{.}840 \dashrightarrow 01{:}04{:}02{.}563$ That's Through like, I don't have any proof, that's true.

01:04:03.652 --> 01:04:05.183 And I would encourage anyone who really wants to dive

 $01:04:05.183 \longrightarrow 01:04:06.016$ in there, go ahead.

01:04:06.016 --> 01:04:06.970 But I'll warn you that I spent a year

 $01{:}04{:}06{.}970 \dashrightarrow 01{:}04{:}09{.}184$ banging my head against that problem.

01:04:09.184 --> 01:04:10.275 And when I didn't

01:04:10.275 --> 01:04:11.882 exhaustively search all the models, I could not, I always

 $01{:}04{:}11.882$ --> $01{:}04{:}15.534$ caused these biases, like there was no way to sample them.

 $01:04:15.534 \rightarrow 01:04:17.217$ I even have ways of sampling the models

01:04:17.217 --> 01:04:19.493 according to their probability.

 $01{:}04{:}23.767 \dashrightarrow 01{:}04{:}27.517$ But even that causes a bias because sometimes

 $01:04:30.526 \longrightarrow 01:04:31.359$ there's a large number.

01:04:31.359 --> 01:04:33.693 So if you look at the, if you think

 $01{:}04{:}33.693 \dashrightarrow 01{:}04{:}35.415$ about the set of models, it's a very large set of models.

 $01:04:35.415 \longrightarrow 01:04:37.915$ And there isn't actually a huge amount

01:04:37.915 --> 01:04:41.839 of likelihood differences between these models.

 $01:04:41.839 \rightarrow 01:04:43.256$ That's the thing.

 $01{:}04{:}44.596 \dashrightarrow 01{:}04{:}49.497$ So when you don't exhaustively sample the models,

 $01:04:49.497 \rightarrow 01:04:53.464$ if you just sample some of the most likely models,

 $01:04:53.464 \rightarrow 01:04:55.728$ you actually are sampling just

 $01:04:55.728 \longrightarrow 01:04:57.137$ one corner of the space.

01:04:57.137 --> 01:04:59.487 And it's possible for a bunch of

 $01:04:59.487 \rightarrow 01:05:00.320$ not quite so likely models, but reasonable models

 $01:05:00.320 \rightarrow 01:05:02.747$ that are not in that corner to sort of be actually

 $01:05:02.747 \dashrightarrow 01:05:03.830$ highly influential on the model average.

 $01:05:03.830 \rightarrow 01:05:04.663$ And so the bottom line is like sampling

 $01{:}05{:}04.663 \dashrightarrow 01{:}05{:}06.471$ by trying to pick in the you know, most likely space doesn't

01:05:06.471 --> 01:05:07.430 work sampling by picking randomly doesn't work.

 $01:05:07.430 \rightarrow 01:05:08.939$ And I could go into more detail about it.

 $01:05:08.939 \rightarrow 01:05:10.400$ But it turned out that I couldn't do it

 $01:05:10.400 \rightarrow 01:05:11.641$ any way other than exhaustive sampling.

 $01{:}05{:}11.641 \dashrightarrow 01{:}05{:}13.512$ So, I say that Sorry, I missed that mistake.

01:05:13.512 $\operatorname{-->}$ 01:05:16.130 I couldn't do it by any biased approach

 $01{:}05{:}16{.}130 \dashrightarrow 01{:}05{:}18{.}152$ towards that exhaustive handling

 $01:05:18.152 \rightarrow 01:05:19.413$ the approach that I'm showing you right here.

 $01:05:20.546 \rightarrow 01:05:21.986$ Actually, there are two ways of doing it.

01:05:21.986 --> 01:05:23.220 One is to sample stochastically,

 $01{:}05{:}23.220 \dashrightarrow 01{:}05{:}27.180$ according to likelihood, and the other is to sample exactly

01:05:27.180 --> 01:05:30.210 across all exhausted sampling significantly works.

 $01:05:30.210 \rightarrow 01:05:32.662$ In fact, it's implemented in the approach that I

01:05:32.662 --> 01:05:35.243 was just showing, I'm sorry, I just sort of jumped too fast

 $01:05:35.243 \rightarrow 01:05:36.877$ to say what I was saying.

 $01:05:36.877 \rightarrow 01:05:38.169$ So sampling stochastically works

 $01{:}05{:}38{.}169{\:-->}01{:}05{:}39{.}700$ and sampling exhaustively work sampling stochastically is

 $01:05:39.700 \rightarrow 01:05:41.652$ still very computationally intensive.

01:05:41.652 --> 01:05:44.204 But there's no I couldn't

01:05:44.204 --> 01:05:46.990 find any way to sort of, you know, important sample or do

 $01{:}05{:}48{.}264 \dashrightarrow 01{:}05{:}49{.}633$ some sort of approach that would allow me to get a smaller

 $01{:}05{:}49.633 \dashrightarrow 01{:}05{:}52.616$ set of models, which would then if we could do that,

 $01:05:52.616 \rightarrow 01:05:55.070$ that could be really important,

01:05:55.070 - 01:05:57.194 because then you could do this

01:05:57.194 --> 01:05:58.630 on more than like 2000 site,

 $01:05:58.630 \rightarrow 01:06:00.110$ it's somewhere around 2000 sites.

 $01:06:00.110 \rightarrow 01:06:02.310$ So you start running into real problems with

 $01:06:03.505 \rightarrow 01:06:04.850$ just too much computing computation time

 $01:06:06.384 \longrightarrow 01:06:07.228$ to make it worthwhile.

01:06:07.228 --> 01:06:09.583 So we could extend this to 10,000 100,000, you know,

 $01{:}06{:}10.874 \dashrightarrow 01{:}06{:}12.990$ potentially really, really large numbers of sites,

 $01{:}06{:}12.990 \dashrightarrow 01{:}06{:}15.650$ and really, really sparse sets of sites.

 $01:06:15.650 \longrightarrow 01:06:17.640$ If only we could find a way

 $01{:}06{:}19.342 \dashrightarrow 01{:}06{:}22.142$ to bias the sampling towards models that are more likely

 $01{:}06{:}24.040 \dashrightarrow 01{:}06{:}25.637$ without causing biases in the results.

 $01{:}06{:}25.637 \dashrightarrow 01{:}06{:}26.470$ I couldn't find any way to do.

 $01{:}06{:}27{.}370 \dashrightarrow 01{:}06{:}30{.}360$ - This seems very much related to tree based

 $01{:}06{:}30{.}360$ --> $01{:}06{:}34{.}360$ methods where essentially you've got, like split the space

 $01:06:35.600 \rightarrow 01:06:38.073$ and then you model of geology models,

 $01:06:38.966 \rightarrow 01:06:40.650$ like the random forest, for example,

01:06:40.650 - 01:06:43.213 or is very much related to that right.

 $01{:}06{:}45{.}447 \dashrightarrow 01{:}06{:}47{.}460$ - Yeah, I have to say I was now familiar

 $01:06:47.460 \longrightarrow 01:06:48.830$ with those approaches.

01:06:48.830 --> 01:06:52.351 But when I was completely unfamiliar with it, yeah, I sort

 $01{:}06{:}52{.}351 \dashrightarrow 01{:}06{:}53{.}690$ of thought about it that way.

 $01{:}06{:}53.690 \dashrightarrow 01{:}06{:}55.680$ But you're absolutely right.

01:06:55.680 --> 01:06:57.250 Yeah, I guess the difference but here

 $01{:}06{:}57{.}250 \dashrightarrow 01{:}06{:}59{.}757$ you have a sequence like one sequence,

 $01:06:59.757 \rightarrow 01:07:01.114$ t
ghere you have a space.

01:07:01.114 --> 01:07:02.418 So you just split in

 $01:07:02.418 \rightarrow 01:07:04.888$ different dimensions, but it is really good.

01:07:04.888 --> 01:07:09.888 - And I can mention, just to speculate,

 $01{:}07{:}10.170 \dashrightarrow 01{:}07{:}12.100$ I'm kind of interested in a number of

01:07:13.390 --> 01:07:14.383 other ways of applying this.

 $01:07:15.349 \rightarrow 01:07:17.210$ So for instance, if the one I've been thinking about

 $01{:}07{:}18.257 \dashrightarrow 01{:}07{:}19.754$ and actually worked on a little

 $01:07:19.754 \rightarrow 01:07:20.739$ bit haven't gotten very far with, but it's like,

 $01:07:20.739 \rightarrow 01:07:22.070$ when you're dealing with event spaces over time,

01:07:22.070 --> 01:07:24.390 like if you have days, and you have individuals like,

 $01:07:24.390 \longrightarrow 01:07:26.690$ prominent us in public health,

 $01:07:26.690 \rightarrow 01:07:29.110$ like individuals who are undergoing events

 $01:07:29.110 \rightarrow 01:07:31.180$ you end up with a very sparse matrix of events.

 $01:07:31.180 \longrightarrow 01:07:36.180$ And so we use these approaches like survival plots

 $01{:}07{:}37{.}895 \dashrightarrow 01{:}07{:}40{.}096$ all these approaches that we use to sort of understand

 $01:07:40.096 \rightarrow 01:07:40.929$ how these rare events are happening,

 $01:07:42.161 \rightarrow 01:07:43.611$ and how people are changing over this,

 $01:07:43.611 \rightarrow 01:07:45.100$ that event space is actually really sparse.

 $01:07:45.100 \longrightarrow 01:07:46.970$ But it's kind of a matrix.

01:07:46.970 --> 01:07:48.380 And you could do this in two dimensions,

01:07:48.380 --> 01:07:49.360 not just one, right?

01:07:49.360 --> 01:07:51.590 So you could model average across two dimensions,

 $01:07:51.590 \rightarrow 01:07:53.472$ and then you could get something

 $01{:}07{:}53.472$ --> $01{:}07{:}55.030$ that the thing that really appeals to me about that is that

 $01:07:55.030 \rightarrow 01:07:58.393$ again, it's really this approach is really,

 $01:08:00.360 \longrightarrow 01:08:04.427$ it only builds up from the this binomial event

 $01{:}08{:}04{.}427 \dashrightarrow 01{:}08{:}08{.}540$ No, no event, stuff, a picture that's very continuous over

 $01:08:08.540 \rightarrow 01:08:10.660$ over the space and involves no assumptions

 $01:08:10.660 \rightarrow 01:08:12.310$ about distribution whatsoever.

 $01:08:12.310 \rightarrow 01:08:14.180$ So I'm just wondering if there aren't instances

01:08:14.180 --> 01:08:16.170 where, you know, we could come up

 $01:08:17.046 \rightarrow 01:08:18.500$ with a better understanding of what's going on

 $01:08:18.500 \rightarrow 01:08:20.270$ with individuals in a matrix such as

 $01:08:20.270 \longrightarrow 01:08:22.090$ that by using this approach.

 $01:08:22.090 \longrightarrow 01:08:23.300$ And it's an approach that is

 $01{:}08{:}23{.}300$ --> $01{:}08{:}26{.}380$ that still works even with these sparse spaces, because

 $01{:}08{:}26{.}380$ --> $01{:}08{:}28{.}930$ you can model average over these tremendously large number

 $01:08:28.930 \rightarrow 01:08:31.170$ of models that all have fairly likely fairly

 $01:08:32.919 \rightarrow 01:08:33.752$ equal likelihood to get a result.

 $01{:}08{:}34{.}883 \dashrightarrow 01{:}08{:}36{.}605$ So I don't know that's just a sort of a

 $01{:}08{:}36.605 \dashrightarrow 01{:}08{:}37.603$ speculation that there might be some interesting approaches

 $01{:}08{:}37{.}603 \dashrightarrow 01{:}08{:}41{.}031$, ways to approach those problems using this kind of kind

 $01:08:41.031 \rightarrow 01:08:43.903$ of model averaging technique.

01:08:46.360 --> 01:08:48.870 - Great, I think we should wrap up.

01:08:48.870 --> 01:08:52.200 Thank you, Jeff, for this great presentation was great.

 $01{:}08{:}52{.}200 \dashrightarrow 01{:}08{:}54{.}843$ And thank you all for joining today.

01:08:56.604 --> 01:08:57.930 See you next next seminar

01:08:57.930 --> 01:09:01.283 is gonna be I think, July 14.

 $01:09:01.283 \longrightarrow 01:09:05.430$ So we'll send out invites.

 $01:09:05.430 \longrightarrow 01:09:07.331$ All right, thank you, Jeff.

 $01:09:07.331 \longrightarrow 01:09:08.223$ Thank you all, bye, bye.