WEBVTT

- 1.00:00:00.180 --> 00:00:01.410 < v Professor Chen>We're ready. </v>
- 2 00:00:01.410 --> 00:00:03.313 So let's get (indistinct), everybody.
- 3 00:00:04.161 --> 00:00:06.784 Thanks everyone, for (indistinct).
- $4~00:00:06.784 \dashrightarrow 00:00:10.073$ It's our second (indistinct) series on (indistinct) today,
- $5\ 00:00:13.440 \longrightarrow 00:00:16.534$ and I'm very pleased today
- 6 00:00:16.534 --> 00:00:21.534 to be able to invite Dr. Evi Samoli for today's seminar.
- 7 00:00:22.380 --> 00:00:25.350 Dr. Samoli is Associate Professor
- $8~00:00:25.350 \longrightarrow 00:00:28.410$ of Epidemiology and Medical Statistics
- 9 00:00:28.410 --> 00:00:32.160 in the Medical School of the National and Kapodistrian,
- $10\ 00:00:32.160 --> 00:00:34.950$ University of Athens in Greece.
- 11 00:00:34.950 --> 00:00:37.890 And Dr. Samoli's research interests
- 12 00:00:37.890 --> 00:00:40.350 focus on environmental epidemiology,
- $13\ 00:00:40.350 \longrightarrow 00:00:41.880$ especially the health effects
- 14 00:00:41.880 --> 00:00:44.422 of air pollution and climate change,
- $15\ 00:00:44.422 --> 00:00:46.530$ and the development and application
- $16\ 00:00:46.530 \longrightarrow 00:00:49.263$ of statistical methods in related research.
- 17 00:00:50.130 --> 00:00:52.020 She has organized and participated
- $18\ 00:00:52.020 \longrightarrow 00:00:54.270$ in several statistical workshops
- $19\ 00:00:54.270 \longrightarrow 00:00:56.733$ and Greek and international conferences.
- $20\ 00:00:58.770 \longrightarrow 00:00:59.880$ She has been a reviewer
- $21~00:00:59.880 \longrightarrow 00:01:02.310$ and also a research committee member
- $22\ 00:01:02.310 --> 00:01:05.430$ of the US Health Effects Institute,
- $23\ 00:01:05.430 \longrightarrow 00:01:07.773$ and also as for the WHO.
- $24\ 00:01:09.690 \dashrightarrow 00:01:14.690$ She recently co-chaired this year's international conference
- $25\ 00:01:15.840$ --> 00:01:20.840 for the International Society of Environmental Epidemiology.
- $26\ 00:01:20.940 \longrightarrow 00:01:22.380$ And her talk today will be

- 27 00:01:22.380 --> 00:01:25.020 Air Pollution Health Effects Under Climate Change:
- $28\ 00:01:25.020 \longrightarrow 00:01:28.500$ A Complex Interaction with Various Pathways.
- $29\ 00:01:28.500 \longrightarrow 00:01:30.223$ So without further ado, (indistinct).
- 30 00:01:32.800 --> 00:01:37.170 <v -> Thank you very much for the introduction, Professor Chen. </v>
- $31\ 00:01:37.170 --> 00:01:41.160$ It's my pleasure to share some of the results
- 32 00:01:41.160 --> 00:01:42.660 with you and your class,
- $33\ 00:01:42.660 --> 00:01:44.400$ and I would like to personally thank you
- $34\ 00:01:44.400 --> 00:01:46.263$ for the invitation for this talk.
- $35~00:01:47.250 \longrightarrow 00:01:51.750$ Because I understand it's a rather diverse audience,
- 36 00:01:51.750 --> 00:01:54.090 I will focus my first slides
- 37 00:01:54.090 --> 00:01:56.910 on introducing the concept of air pollution,
- $38\ 00:01:56.910 --> 00:02:00.570$ because as Professor Chen mentioned,
- 39 00:02:00.570 --> 00:02:03.540 my focus is on ambient air pollution,
- $40~00:02:03.540 \longrightarrow 00:02:06.900$ and what we know now of the health effects of air pollution,
- $41\ 00:02:06.900 \longrightarrow 00:02:09.810$ and then go deeper into how this interacts
- $42\ 00:02:09.810 \longrightarrow 00:02:13.590$ with the climate change health effects.
- $43\ 00:02:13.590 \longrightarrow 00:02:16.920$ Now to start with, the pollutant that we know
- $44\ 00:02:16.920 \dashrightarrow 00:02:20.610$ has most effects on health is particulate matter
- $45\ 00:02:20.610$ --> 00:02:24.673 with an aerodynamic diameter of 2.5 micrometers.
- $46~00:02:26.070 \longrightarrow 00:02:30.513$ To get you an idea of what particular matter PM 2.5 means,
- 47 00:02:31.350 --> 00:02:36.000 it's matter that is airborne in the air,
- $48\ 00:02:36.000 \longrightarrow 00:02:40.620$ and with small, so small as you can see from the graph here,
- $49\ 00:02:40.620 \longrightarrow 00:02:44.970$ that's smaller in fact than a red blood cell.
- $50\ 00:02:44.970$ --> 00:02:48.630 So initially, we had investigated particulate matter
- $51~00:02:48.630 \dashrightarrow 00:02:53.010$ that had a diameter of 10 micrometers, so was PM 10.

- $52\ 00:02:53.010 \longrightarrow 00:02:56.190$ But the most toxic effects of particulate matter
- $53\ 00:02:56.190 \longrightarrow 00:02:58.980$ are those associated with the smaller particles
- $54\ 00:02:58.980 \longrightarrow 00:03:02.220$ which are easier to penetrate into the lung
- $55\ 00:03:02.220 \longrightarrow 00:03:04.320$ from the respiratory tract
- $56\ 00:03:04.320 \longrightarrow 00:03:07.620$ and cause (indistinct) stress and inflammation.
- 57 00:03:07.620 --> 00:03:09.420 Now you must consider that
- $58\ 00:03:09.420$ --> 00:03:13.263 because particulate matter is matter that is airborne.
- $59\ 00:03:14.400 \longrightarrow 00:03:19.230$ its composition changes according to its sources,
- $60\ 00{:}03{:}19.230 --> 00{:}03{:}23.670$ and it also attracts different kind of chemical compounds
- 61 00:03:23.670 --> 00:03:25.500 depending on the atmosphere.
- $62\ 00{:}03{:}25.500 {\: -->\:} 00{:}03{:}29.970$ So we have particles that are directly emitted from sources
- 63 00:03:29.970 --> 00:03:34.620 such as tailpipe exhaustion sources,
- $64\ 00{:}03{:}34.620 {\: -->\:} 00{:}03{:}38.010$ or we have secondary particles formed in the atmosphere
- $65\ 00:03:38.010 \longrightarrow 00:03:40.113$ through chemical reactions.
- 66 00:03:41.400 --> 00:03:42.960 In this part of the slide,
- 67 00:03:42.960 --> 00:03:46.890 you can see the different figures,
- $68~00:03:46.890 \longrightarrow 00:03:49.470$ the different pictures of particulate matter
- $69~00{:}03{:}49.470 \dashrightarrow 00{:}03{:}51.450$ that has different compositions.
- $70\ 00:03:51.450 -> 00:03:55.200$ So for example, this is a biological source
- 71 $00:03:55.200 \longrightarrow 00:03:57.120$ of particulate matter.
- $72~00{:}03{:}57.120 \dashrightarrow 00{:}04{:}00.510$ The one next to it, I'm not sure if you can see my cursor,
- 73 00:04:00.510 --> 00:04:02.700 is my cursor visible while...
- 74 00:04:02.700 --> 00:04:04.530 < v ->Yes, we can see.</v> < v ->Excellent.</v>
- $75\ 00:04:04.530 \longrightarrow 00:04:07.020$ So this one is particulate matter
- $76\ 00:04:07.020 \longrightarrow 00:04:09.720$ that is emitted from tailpipes.
- $77\ 00:04:09.720 --> 00:04:12.390$ It's soot particulate matter.

- $78\ 00:04:12.390 \longrightarrow 00:04:17.390$ This is from an unknown source, and this basically is dust.
- $79\ 00:04:18.570 \longrightarrow 00:04:22.620$ So not only the size of particulate matter differs,
- $80\ 00:04:22.620 \dashrightarrow 00:04:26.280$ but also the composition differs according to sources.
- $81~00:04:26.280 \longrightarrow 00:04:29.610$ Of course, when we talk about ambient air pollution,
- 82 00:04:29.610 --> 00:04:32.210 apart from ambient particulate matter,
- 83 00:04:32.210 --> 00:04:34.560 we are exposed to a variety of gasses,
- $84\ 00:04:34.560 --> 00:04:39.010$ of which the most common are nitrogen oxides
- 85 00:04:39.930 --> 00:04:44.930 and sulfur dioxide, carbon monoxide,
- $86\ 00:04:45.000 \longrightarrow 00:04:47.460$ and several hydrocarbons.
- 87 00:04:47.460 --> 00:04:48.630 Here in this slide,
- $88~00:04:48.630 \longrightarrow 00:04:51.570$ you can see the sources of particulate matter
- $89\ 00:04:51.570 \longrightarrow 00:04:56.570$ or gaseous pollutants from research in the UK,
- $90\ 00:04:56.640 --> 00:04:58.860$ because you must understand
- $91\ 00:04:58.860 \longrightarrow 00:05:02.310$ that the main sources will differ
- 92 00:05:02.310 --> 00:05:05.910 according to the location, because the sources will differ.
- 93 00:05:05.910 \rightarrow 00:05:07.170 But in general,
- 94 00:05:07.170 --> 00:05:10.814 nitrogen oxides are mainly emitted from traffic,
- $95\ 00:05:10.814 \longrightarrow 00:05:13.110$ traffic related pollutants,
- 96 00:05:13.110 --> 00:05:16.560 and are emitted from tailpipe emissions,
- $97\ 00:05:16.560 \longrightarrow 00:05:20.190$ while particulate matter, depends on the sources,
- 98 00:05:20.190 --> 00:05:22.170 comes heavily from residential
- 99 00:05:22.170 --> 00:05:25.590 and small scale commercial combustion, as you see here.
- 100 00:05:25.590 --> 00:05:28.530 But also, it may be emitted from tailpipe,
- 101 00:05:28.530 --> 00:05:31.413 or non tailpipe sources, for example,
- $102\ 00:05:32.340 \longrightarrow 00:05:34.740$ they might be dust particles in the air
- $103\ 00:05:34.740 \longrightarrow 00:05:38.280$ that come also from the brakes
- $104\ 00:05:38.280 \longrightarrow 00:05:43.280$ and the tire contact of the car into the roads.

- $105\ 00:05:45.570 \longrightarrow 00:05:47.340$ From the gaseous pollutants,
- $106\ 00:05:47.340 \longrightarrow 00:05:49.440$ the one that has received most attention
- 107 00:05:49.440 --> 00:05:51.360 apart from nitrogen oxide,
- $108\ 00:05:51.360 --> 00:05:53.370$ and the one that is most relevant
- $109\ 00:05:53.370 \longrightarrow 00:05:55.980$ with climate change is ozone.
- $110\ 00:05:55.980 \longrightarrow 00:05:58.510$ So you may be aware that ozone
- $111\ 00:05:58.510 \longrightarrow 00:06:01.770$ is in different strata of the atmosphere.
- $112\ 00:06:01.770 --> 00:06:04.680$ When ozone is on the external atmosphere,
- $113\ 00:06:04.680 \longrightarrow 00:06:06.960$ what that is called the stratosphere,
- $114\ 00:06:06.960 \longrightarrow 00:06:10.020$ is the ozone that it's good for the environment,
- 115 00:06:10.020 --> 00:06:11.730 that protects, in fact,
- $116\ 00:06:11.730 \longrightarrow 00:06:15.180$ Earth from the sun's ultraviolet radiation.
- 117 00:06:15.180 --> 00:06:19.470 But when we talk about ozone in air pollution,
- $118\ 00:06:19.470 --> 00:06:23.730$ we mean the ozone that is encountered in the troposphere,
- $119\ 00:06:23.730 \longrightarrow 00:06:26.760$ in the lower levels of the atmosphere.
- $120\ 00:06:26.760 \longrightarrow 00:06:30.930$ And this, in fact, is a secondary gaseous pollutant,
- $121\ 00:06:30.930 \longrightarrow 00:06:35.760$ because in order to form ozone in the troposphere,
- $122\ 00{:}06{:}35.760 \dashrightarrow 00{:}06{:}39.420$ this is formed from secondary chemical reactions
- 123 00:06:39.420 \rightarrow 00:06:44.420 that require nitrogen oxides emitted from traffic sources
- $124\ 00:06:45.450 \longrightarrow 00:06:47.610$ in the presence of sunlight.
- $125\ 00:06:47.610 \longrightarrow 00:06:50.310$ That is why it is heavily dependent
- $126\ 00:06:50.310 --> 00:06:51.930$ on climate change scenario,
- $127\ 00:06:51.930 \longrightarrow 00:06:54.960$ because as we expect that the heat will increase,
- $128\ 00:06:54.960 \longrightarrow 00:06:58.560$ the temperature will heat because of climate change,
- $129\ 00:06:58.560 \longrightarrow 00:07:01.533$ ozone levels are also expected to increase,
- $130\ 00{:}07{:}02.580 \dashrightarrow 00{:}07{:}05.430$ and I will give a small presentation

- $131\ 00:07:05.430 \longrightarrow 00:07:09.630$ about the known health effects of these air pollutants.
- $132\ 00:07:09.630 \longrightarrow 00:07:12.420$ Now in general, air pollution health effects
- $133\ 00{:}07{:}12.420 --> 00{:}07{:}16.080$ are very small, (indistinct) made very small relative risks
- $134\ 00:07:16.080 \longrightarrow 00:07:18.483$ compared to other risk factors for health.
- $135\ 00:07:19.440 \longrightarrow 00:07:24.440$ For example, we might estimate relative risks
- $136\ 00:07:24.450 \longrightarrow 00:07:27.810$ of the scale of 1.06.
- $137\ 00:07:27.810 \longrightarrow 00:07:31.470$ So it's a very small relative risk for human health,
- $138\ 00:07:31.470 \longrightarrow 00:07:36.000$ but if we consider the involuntary exposure
- $139\ 00:07:36.000 \longrightarrow 00:07:38.970$ of the whole population to air pollution,
- $140\ 00:07:38.970 --> 00:07:41.730$ we understand why this is considered
- 141 00:07:41.730 --> 00:07:45.690 a major risk factor for human health.
- $142\ 00:07:45.690 --> 00:07:49.530$ And this translates also to a large number
- $143\ 00:07:49.530 \longrightarrow 00:07:51.750$ of attributable deaths.
- 144 00:07:51.750 --> 00:07:53.880 So in general, in this pyramid,
- $145\ 00{:}07{:}53.880 \dashrightarrow 00{:}07{:}55.950$ it's a classic pyramid portraying
- $146\ 00:07:55.950 \longrightarrow 00:07:57.870$ the effects of air pollution,
- $147\ 00:07:57.870 \longrightarrow 00:07:59.970$ where the majority of the population
- $148\ 00:07:59.970 \longrightarrow 00:08:02.040$ is in the bottom of the pyramid,
- $149\ 00:08:02.040 --> 00:08:07.040$ and is expected to have only very minor symptoms.
- $150\ 00:08:07.860 \longrightarrow 00:08:10.323$ But as we go up to the pyramid,
- 151 00:08:12.150 --> 00:08:15.510 the severity of the effect increases,
- $152\ 00:08:15.510 \longrightarrow 00:08:17.820$ and the proportion of the population
- $153\ 00:08:17.820 --> 00:08:20.490$ that is expected to experience
- $154\ 00:08:20.490 \longrightarrow 00:08:23.280$ these severe health effects is reduced.
- $155\ 00:08:23.280 \longrightarrow 00:08:28.280$ But nevertheless, because exactly the exposure is so wide,
- $156\ 00:08:28.380 --> 00:08:31.890$ this is a considerable number of attributable cases
- $157\ 00:08:31.890 \longrightarrow 00:08:34.830$ and that is why it's a very critical matter

- $158\ 00:08:34.830 \longrightarrow 00:08:35.943$ for public health.
- $159\ 00:08:37.590 \longrightarrow 00:08:41.760$ How do we estimate the health effects of air pollution?
- $160\ 00{:}08{:}41.760 \dashrightarrow 00{:}08{:}45.120$ There are two kinds of ways to approach and investigate
- $161\ 00:08:45.120 \longrightarrow 00:08:47.160$ health effects of air pollution.
- $162\ 00:08:47.160 \longrightarrow 00:08:49.350$ One is short term health effects,
- $163\ 00{:}08{:}49.350 \dashrightarrow 00{:}08{:}52.260$ meaning the health effects that are encountered
- $164\ 00:08:52.260 \longrightarrow 00:08:55.950$ after a few days, or at most,
- $165\ 00:08:55.950 \longrightarrow 00:09:00.451$ a month prior to the event that we're interested in.
- $166\ 00:09:00.451 \longrightarrow 00:09:02.430$ Or the long term health effects,
- $167\ 00:09:02.430 \dashrightarrow 00:09:06.150$ meaning that the health effects that are attributed
- $168\ 00{:}09{:}06.150 \dashrightarrow 00{:}09{:}09{:}210$ to cumulative exposure to air pollution, for example,
- $169\ 00{:}09{:}09{:}210 \dashrightarrow 00{:}09{:}13.860$ to air pollution we're exposed to at our residence.
- $170\ 00:09:13.860 --> 00:09:17.700$ And this may help, as it has been shown
- 171 00:09:17.700 --> 00:09:21.450 to increase the incidence of cancers,
- $172\ 00:09:21.450 --> 00:09:22.980$ and particularly lung cancer.
- $173\ 00:09:22.980 \longrightarrow 00:09:26.730$ So there's those two ways of effects,
- $174\ 00:09:26.730 \longrightarrow 00:09:29.010$ either short or long-term effects.
- 175 00:09:29.010 --> 00:09:31.650 But nevertheless, as you may imagine,
- 176 00:09:31.650 --> 00:09:34.620 there's a continuing, continuing, excuse me,
- 177 00:09:34.620 --> 00:09:37.770 between short and long term health effects,
- $178\ 00:09:37.770 \longrightarrow 00:09:41.580$ that it's not completely understood.
- $179\ 00:09:41.580 --> 00:09:44.070$ Short term health effects are very smaller
- 180 00:09:44.070 --> 00:09:45.660 compared to magnitude,
- $181\ 00:09:45.660$ --> 00:09:48.753 compared to longer term health effects in general.
- $182\ 00:09:50.760 \dashrightarrow 00:09:55.080$ You may be aware of the Global Burden of Disease project,

- $183\ 00:09:55.080 \longrightarrow 00:09:59.610$ that classifies risk factor for health globally
- $184\ 00:09:59.610 \longrightarrow 00:10:03.480$ in a periodic time periods.
- $185\ 00:10:03.480 --> 00:10:06.270$ Air pollution is always classified
- $186\ 00:10:06.270 --> 00:10:09.120$ on the 10 most important risk factors
- 187 00:10:09.120 --> 00:10:11.310 for health globally,
- $188\ 00:10:11.310 \longrightarrow 00:10:15.510$ either if this is accounted for in number of deaths,
- $189\ 00:10:15.510 \longrightarrow 00:10:18.330$ or disability adjusted years.
- $190\ 00:10:18.330 \longrightarrow 00:10:20.160$ In the latest classification
- 191 00:10:20.160 --> 00:10:22.800 of the Global Burden of Disease project,
- $192\ 00{:}10{:}22.800 \dashrightarrow 00{:}10{:}26.610$ you may see that air pollution in terms of mortality
- 193 00:10:26.610 --> 00:10:30.480 was classified as the fourth risk factor,
- $194\ 00:10:30.480 \longrightarrow 00:10:34.260$ only below high blood pressure, smoking habits,
- $195\ 00:10:34.260 \longrightarrow 00:10:38.010$ and dietary habits as well.
- $196\ 00:10:38.010 \longrightarrow 00:10:39.690$ And it accounted for about
- 197 00:10:39.690 --> 00:10:42.933 6.7 million deaths annually globally.
- $198\ 00:10:43.980 \longrightarrow 00:10:47.160$ Now these kinds of health effects are attributed,
- $199\ 00:10:47.160 --> 00:10:51.450$ and this is what is estimated underneath these figures.
- $200\ 00:10:51.450 --> 00:10:55.860$ These are health effects attributed to PM 2.5,
- 201 00:10:55.860 --> 00:10:59.850 as I introduced it earlier, and to ozone health effects.
- $202\ 00:10:59.850 \longrightarrow 00:11:02.220$ These are the two pollutants
- $203\ 00{:}11{:}02.220 --> 00{:}11{:}05.943$ that we have the most consistent evidence on health effects.
- 204 00:11:06.840 --> 00:11:11.840 For PM 2.5, basically,
- 205 00:11:12.030 --> 00:11:14.760 this accounts for long term health effects,
- $206\ 00:11:14.760 --> 00:11:18.437$ while for ozone, we are most certain
- 207 00:11:20.100 --> 00:11:22.290 about its short term lung effects,

- $208~00{:}11{:}22.290 \dashrightarrow 00{:}11{:}26.340$ while the longer term health effects of ozone exposure
- $209\ 00:11:26.340 \longrightarrow 00:11:28.353$ are still under investigation.
- 210 00:11:29.250 --> 00:11:31.770 What kind of disease we are talking about
- $211\ 00:11:31.770 --> 00:11:35.670$ when we are talking about air pollution health effects?
- 212 00:11:35.670 --> 00:11:38.940 You can see here from the State of Global Air,
- $213\ 00:11:38.940 \longrightarrow 00:11:42.090$ that I urge you to visit, is a site
- $214\ 00{:}11{:}42.090 \dashrightarrow 00{:}11{:}44.850$ that it's been sustained by the Health Effects Institute,
- $215\ 00:11:44.850 \longrightarrow 00:11:47.610$ and has similar figures
- 216 00:11:47.610 --> 00:11:49.980 of the levels of air pollution globally,
- $217\ 00:11:49.980 --> 00:11:52.240$ or the attributable number of deaths
- 218 00:11:53.130 --> 00:11:56.340 attributable to PM 2.5 exposure,
- $219\ 00{:}11{:}56.340 \dashrightarrow 00{:}12{:}00.750$ ozone exposure, or even household indoors exposure.
- $220~00{:}12{:}00.750$ --> $00{:}12{:}05.750$ So we can see that we have about 40% of COPD deaths
- $221\ 00:12:08.550 \longrightarrow 00:12:11.910$ attributed to PM 2.5.
- $222\ 00:12:11.910 --> 00:12:15.540\ 20\%$ about from diabetes deaths
- $223\ 00:12:15.540 \longrightarrow 00:12:17.940$ are attributed to air pollution.
- 224 00:12:17.940 --> 00:12:20.100 20\% of ischemic heart disease,
- 225 00:12:20.100 --> 00:12:22.920 or lower respiratory infections.
- 226 00:12:22.920 --> 00:12:27.180 About 20% of lung cancer cases are also attributed
- $227\ 00{:}12{:}27.180 \dashrightarrow 00{:}12{:}32.180$ to ambient air pollution, and also to neonatal deaths,
- 228 00:12:32.550 --> 00:12:35.103 it's a similar percentage, or stroke.
- $229\ 00:12:37.500 \longrightarrow 00:12:39.417$ Following these severe health effects
- $230\ 00:12:39.417 \longrightarrow 00:12:41.010$ for the general population
- $231\ 00:12:41.010 \longrightarrow 00:12:43.565$ and the importance in public health.
- 232 00:12:43.565 --> 00:12:48.565 WHO releases air quality guidelines regularly,
- $233\ 00:12:48.630 \longrightarrow 00:12:51.180$ and in the last month,

- 234 00:12:51.180 --> 00:12:56.180 it has released the more strict guidelines,
- $235\ 00:12:56.940 \longrightarrow 00:13:00.820$ requiring air pollutant levels for PM 2.5
- $236\ 00{:}13{:}01.680 \dashrightarrow 00{:}13{:}04.770$ to be less than five micrograms per cubic meter.
- $237\ 00:13:04.770 \longrightarrow 00:13:07.983$ This is a mean year average.
- 238 00:13:08.983 --> 00:13:12.750 PM 10 is a bit higher, it's 15 micrograms,
- $239\ 00:13:12.750 \longrightarrow 00:13:14.220$ the limit suggested.
- $240\ 00{:}13{:}14.220 \dashrightarrow 00{:}13{:}18.990$ For ozone, you can see it's 60 micrograms per cubic meter.
- 241 00:13:18.990 --> 00:13:23.220 Ozone usually is measured in the US in parts per billion.
- 242 00:13:23.220 --> 00:13:25.863 So you may see the units in PPB.
- 243 00:13:26.850 --> 00:13:29.580 And the nitrogen dioxide is about
- $244\ 00{:}13{:}29.580 \dashrightarrow 00{:}13{:}34.560\ 10$ micrograms per cubic meter as a annual average.
- 245 00:13:34.560 --> 00:13:39.560 24 daily averages are always a bit larger.
- $246\ 00:13:42.780 \longrightarrow 00:13:47.480$ Now how do this compare to the existing levels
- 247 00:13:47.480 --> 00:13:48.420 of air pollutants?
- $248\ 00:13:48.420 \longrightarrow 00:13:51.060\ I$ may assure you that both for US
- 249 00:13:51.060 --> 00:13:55.770 and the large majority of European countries,
- $250\ 00{:}13{:}55.770 \dashrightarrow 00{:}14{:}00.770$ these are lower than the existing levels of air pollution,
- $251\ 00:14:00.780 \longrightarrow 00:14:04.110$ considering the year averages.
- 252 00:14:04.110 --> 00:14:06.690 The WHO air guidelines
- $253\ 00:14:06.690 --> 00:14:11.690$ are not legislative binding for the countries.
- 254 00:14:12.840 --> 00:14:16.080 They're based on protecting public health,
- $255\ 00{:}14{:}16.080 \dashrightarrow 00{:}14{:}21.080$ and then the area specific authorities
- 256 00:14:22.470 --> 00:14:24.360 release their own guidelines,
- $257\ 00{:}14{:}24.360 \dashrightarrow 00{:}14{:}28.650$ taking into account not only the interest of public health
- $258\ 00:14:28.650 \dashrightarrow 00:14:31.980$ and how this is reflected in the WHO guidelines,
- $259\ 00:14:31.980 --> 00:14:34.740$ but also, as you may imagine, other aspects

- 260 00:14:34.740 --> 00:14:38.190 such as the cost benefit fractions,
- $261\ 00:14:38.190 \longrightarrow 00:14:41.670$ and how would this impact the economy
- $262\ 00:14:41.670 \longrightarrow 00:14:45.390$ in order to lower the levels in terms of productivity,
- 263 00:14:45.390 --> 00:14:48.000 industry, and so on, and so on.
- $264\ 00{:}14{:}48.000 \dashrightarrow 00{:}14{:}53.000$ So here, in this slide, you will see the limit values
- 265 00:14:53.160 --> 00:14:56.940 that are currently existing,
- 266 00:14:56.940 --> 00:15:00.240 both in the European Commission on the left,
- $267~00:15:00.240 \dashrightarrow 00:15:03.750$ and UN's on the right that you can see.
- $268\ 00:15:03.750 \longrightarrow 00:15:06.510$ The levels are higher than those
- $269\ 00:15:06.510 \longrightarrow 00:15:09.660$ that are proposed by the WHO.
- 270 00:15:09.660 --> 00:15:14.430 For example, for PM 2.5, you can see here,
- $271\ 00{:}15{:}14.430 \dashrightarrow 00{:}15{:}19.080$ depending on the source, that EPA suggested limit values
- 272 00:15:19.080 --> 00:15:21.240 are very much higher
- $273\ 00:15:21.240 --> 00:15:23.560$ than the five micrograms per cubic meter
- $274~00{:}15{:}24.450 \dashrightarrow 00{:}15{:}29.450$ proposed by WHO, while for the same pollutant and metric
- 275 00:15:32.880 --> 00:15:36.810 in Europe, we have even larger limit values.
- $276\ 00:15:36.810 \longrightarrow 00:15:41.010$ These are the legislative binding limit values
- $277\ 00:15:41.010 \longrightarrow 00:15:42.300$ for the state members.
- $278\ 00:15:42.300 \longrightarrow 00:15:47.040$ So in Europe, for example, if we exceed this kind of limit,
- $279\ 00:15:47.040 --> 00:15:52.040$ we are under fine to the European Commission.
- $280~00{:}15{:}53.100 \dashrightarrow 00{:}15{:}56.760$ And nevertheless, it's clear that this is not a measure
- 281 00:15:56.760 --> 00:15:58.020 that protects public health,
- $282\ 00:15:58.020$ --> 00:16:01.620 and it's a big pressure nowadays to lower the limits,
- $283\ 00:16:01.620 \longrightarrow 00:16:04.203$ both in US and the European Union.
- 284 00:16:06.120 --> 00:16:07.980 So coming into the interplay

- $285\ 00:16:07.980 \longrightarrow 00:16:10.500$ with climate change health effects.
- $286\ 00:16:10.500 \longrightarrow 00:16:14.520$ We know that the climate change health effects
- $287\ 00:16:14.520 \longrightarrow 00:16:17.550$ can be either direct or indirect.
- $288\ 00:16:17.550 \longrightarrow 00:16:20.580$ For example, we have direct health effects
- 289 00:16:20.580 --> 00:16:23.310 due to climate change extreme events,
- 290 00:16:23.310 --> 00:16:27.390 such as heat strokes under heat waves,
- $291\ 00:16:27.390 --> 00:16:31.620$ or we may have fatalities in wildfires
- $292\ 00:16:31.620 \longrightarrow 00:16:33.750$ and similar extreme events.
- $293\ 00:16:33.750 --> 00:16:35.923$ But we also have indirect health effects
- 294 00:16:35.923 --> 00:16:38.730 attributed to climate change,
- 295 00:16:38.730 --> 00:16:41.580 because climate change impacts also
- 296 00:16:41.580 --> 00:16:45.480 the quality of the air,
- $297\ 00:16:45.480 \longrightarrow 00:16:48.390$ so it worsens the levels of air pollutants.
- $298\ 00:16:48.390 \longrightarrow 00:16:51.930$ Hence, we have this indirect effect
- $299\ 00{:}16{:}51.930 \dashrightarrow 00{:}16{:}56.160$ from increasing the health effects of air pollution
- $300\ 00:16:56.160 --> 00:16:57.843$ that I mentioned earlier.
- 301 00:16:59.010 --> 00:17:02.100 I will show in the later slides
- $302\ 00:17:02.100 \longrightarrow 00:17:06.030$ that this is a much more complex interaction
- $303\ 00{:}17{:}06.030 \dashrightarrow 00{:}17{:}09.330$ between climate change events and air pollutants.
- 304 00:17:09.330 --> 00:17:11.520 It also has indirect health effects,
- $305\ 00:17:11.520$ --> 00:17:16.520 because climate change impacts also public health services.
- $306\ 00:17:17.520 --> 00:17:21.510$ So the public health sector is not ready
- $307\ 00:17:21.510 \longrightarrow 00:17:24.673$ to accommodate the extra events
- $308\ 00:17:24.673 \longrightarrow 00:17:27.210$ attributed to climate change extreme events,
- $309\ 00:17:27.210 \longrightarrow 00:17:30.630$ but also to the entire effect that follow
- $310\ 00:17:30.630 \longrightarrow 00:17:32.043$ climate change events.
- 311 00:17:34.110 --> 00:17:37.530 This comes from a report in the European Commission

- $312\ 00:17:37.530 \longrightarrow 00:17:41.940$ that somehow schematically illustrates what you may know,
- $313\ 00:17:41.940 \longrightarrow 00:17:45.270$ that temperature has effects on human health.
- $314\ 00:17:45.270 \longrightarrow 00:17:47.790$ We know that, for example,
- $315\ 00{:}17{:}47.790 --> 00{:}17{:}52.230$ mortality occurs in low temperatures or in high temperature.
- $316\ 00{:}17{:}52.230$ --> $00{:}17{:}55.980$ The shape between temperature levels and health
- 317 00:17:55.980 --> 00:17:58.680 is a parabola, a U shape,
- $318\ 00:17:58.680 \longrightarrow 00:18:02.190$ where we see increasing events in the very low temperatures,
- 319 00:18:02.190 --> 00:18:05.490 as you may imagine, or the very high temperatures.
- $320\ 00:18:05.490 --> 00:18:09.227$ So temperature has a direct effect on human health.
- 321 00:18:10.073 --> 00:18:13.860 And in fact, the temperature effects on health
- 322 00:18:13.860 --> 00:18:15.990 are more strong in magnitude
- $323\ 00{:}18{:}15.990 \dashrightarrow 00{:}18{:}20.223$ than the effects of air pollution that I mentioned earlier.
- $324\ 00:18:21.450 \longrightarrow 00:18:24.780$ As you may see from the report of the European Commission,
- 325 00:18:24.780 --> 00:18:27.510 there's a geographical variability
- $326\ 00{:}18{:}27.510 {\: --> \:} 00{:}18{:}30.870$ in the health effects of temperature,
- $327\ 00:18:30.870 \longrightarrow 00:18:33.930$ and generally of climate change.
- $328\ 00:18:33.930 --> 00:18:37.500$ We have more severe effects in hotter climates,
- $329\ 00:18:37.500 \longrightarrow 00:18:40.500$ such as the southern Europe
- $330\ 00:18:40.500 \longrightarrow 00:18:42.900$ compared to the northern European countries.
- $331\ 00{:}18{:}42.900 \dashrightarrow 00{:}18{:}46.350$ And we have also, not only geographical probability,
- $332\ 00:18:46.350 \longrightarrow 00:18:48.390$ but we have a (indistinct) effect
- $333\ 00:18:48.390 --> 00:18:52.350$ depending on the subpopulation groups we are interested in.
- 334 00:18:52.350 --> 00:18:56.850 So people that are usually more sensitive

- $335\ 00:18:56.850 --> 00:19:00.480$ to meteorological and air pollution health effects
- 336 00:19:00.480 --> 00:19:02.880 are children, pregnant women,
- $337\ 00:19:02.880 \longrightarrow 00:19:07.880$ and elderly citizens, or people with preexisting diseases.
- $338\ 00:19:11.640 --> 00:19:16.307$ Why now climate change has a more complex pathway
- 339 00:19:17.700 --> 00:19:20.010 to health through air pollution?
- $340\ 00{:}19{:}20.010$ --> $00{:}19{:}25.010$ Because air pollution emissions also are a contributor
- $341\ 00:19:25.830 \longrightarrow 00:19:29.850$ to climate change events.
- 342 00:19:29.850 --> 00:19:33.510 So emissions increase temperature,
- $343\ 00:19:33.510 \longrightarrow 00:19:37.200$ that constitutes part of climate change,
- 344 00:19:37.200 --> 00:19:39.540 and this, in fact, the increase in temperature,
- 345 00:19:39.540 --> 00:19:41.853 as I mentioned in the beginning of the talk,
- 346 00:19:42.720 --> 00:19:45.210 is necessary to produce more ozone,
- $347\ 00{:}19{:}45.210$ --> $00{:}19{:}49.470$ that is also known to have adverse health effects
- $348\ 00:19:49.470 \longrightarrow 00:19:50.970$ to human health.
- $349\ 00:19:50.970 \longrightarrow 00:19:52.590$ There are also interactions
- 350 00:19:52.590 --> 00:19:54.660 between temperature and air pollution,
- $351\ 00{:}19{:}54.660 {\:{\mbox{--}}}{>} 00{:}19{:}58.280$ meaning that we have higher effects of temperature
- $352\ 00:19:58.280 \longrightarrow 00:20:00.270$ in more polluted areas,
- $353\ 00{:}20{:}00.270$ --> $00{:}20{:}04.500$ or we have higher effects of air pollution in warmer areas.
- $354\ 00:20:04.500 \dashrightarrow 00:20:09.480$ This still now have traditionally been studied separately,
- $355\ 00:20:09.480 \longrightarrow 00:20:14.250$ but because of the complex interplay between climate change,
- $356\ 00:20:14.250 \longrightarrow 00:20:18.210$ and particularly temperature levels and air pollution,
- $357\ 00:20:18.210 \longrightarrow 00:20:19.740$ in the recent years,
- 358 00:20:19.740 --> 00:20:23.130 this have received increasing attention,

- 359 00:20:23.130 --> 00:20:25.170 and more publications are coming up,
- 360~00:20:25.170 --> 00:20:28.190 and I will just go through some main publications
- $361\ 00:20:28.190 \longrightarrow 00:20:30.723$ on the topic in the later slides.
- 362 00:20:31.740 --> 00:20:34.560 Apart from this interplay
- 363 00:20:34.560 --> 00:20:37.593 between temperature and air pollution,
- $364\ 00:20:38.580 \longrightarrow 00:20:40.530$ we know that climate change
- $365\ 00:20:40.530 \longrightarrow 00:20:44.730$ increases the occurrence of wildfires.
- $366\ 00:20:44.730 --> 00:20:48.360$ Wildfires are a main source of emission
- $367\ 00:20:48.360 \longrightarrow 00:20:50.670$ of particulate matter in the air.
- $368\ 00:20:50.670 \longrightarrow 00:20:52.410$ For example, you may recall
- $369\ 00:20:52.410 --> 00:20:57.060$ the very intense wildfires that burnt over California,
- $370\ 00{:}20{:}57.060 --> 00{:}20{:}59.010$ I think this was two years ago.
- $371\ 00:20:59.010 --> 00:21:01.560$ The smoke reached all the way
- $372\ 00:21:01.560 \longrightarrow 00:21:03.660$ up to the east coast of the US.
- $373\ 00:21:03.660 \longrightarrow 00:21:06.630$ So we have the source of wildfires
- $374\ 00:21:06.630 \longrightarrow 00:21:11.130$ that not only impacts the location where wildfire occurs,
- $375\ 00:21:11.130 \longrightarrow 00:21:15.600$ but also depending on the wind direction and the atmosphere,
- $376\ 00{:}21{:}15.600$ --> $00{:}21{:}20.600$ atmospheric reaction, may also impact air quality levels
- $377\ 00:21:21.210 \longrightarrow 00:21:23.493$ in further distances.
- $378\ 00:21:25.020 \longrightarrow 00:21:26.580$ Further up to that,
- $379\ 00:21:26.580 \longrightarrow 00:21:30.600$ climate change is expected to increase drought,
- $380\ 00:21:30.600 \longrightarrow 00:21:35.490$ and also the frequency of desert dust episodes.
- 381 00:21:35.490 --> 00:21:36.690 I told you in the beginning
- $382\ 00:21:36.690 \longrightarrow 00:21:38.610$ that one source of particulate matter
- $383\ 00:21:38.610 --> 00:21:40.980$ in ambient air is dust.
- $384\ 00{:}21{:}40.980 \dashrightarrow 00{:}21{:}44.490$ So we have occurrences of desert dust transport,

- $385\ 00:21:44.490 \longrightarrow 00:21:47.670$ for example, in Greece, and in the southern of Europe,
- $386\ 00:21:47.670 \longrightarrow 00:21:50.730$ we have desert dust transport,
- 387 00:21:50.730 --> 00:21:53.820 traditionally during spring or early summer,
- $388\ 00:21:53.820 \longrightarrow 00:21:55.860$ from the Sahara area.
- $389\ 00{:}21{:}55.860 {\:-->}\ 00{:}21{:}58.590$ Depending on meteorological conditions,
- $390\ 00:21:58.590 \longrightarrow 00:22:00.690$ Sahara area has been shown
- $391\ 00:22:00.690 --> 00:22:03.210$ also to reach the east coast of US sometimes.
- $392\ 00:22:03.210 \longrightarrow 00:22:06.420$ So these kinds of desert dust episodes
- $393\ 00:22:06.420$ --> 00:22:11.420 are expected to increase both in frequency and duration.
- 394~00:22:12.120 --> 00:22:15.960 Apart from that, also the fact that climate change
- 395 00:22:15.960 --> 00:22:18.300 increases drought,
- $396\ 00:22:18.300 \longrightarrow 00:22:21.090$ we can understand that this also will increase
- $397\ 00:22:21.090 \longrightarrow 00:22:25.893$ suspended particles from dust sources.
- 398 00:22:28.020 --> 00:22:31.650 This publication is a nice figure,
- $399~00{:}22{:}31.650 \dashrightarrow 00{:}22{:}36.650$ also graphically showing this direct and indirect effects
- $400\ 00:22:36.900 \longrightarrow 00:22:40.350$ between climate change and, in fact,
- $401\ 00:22:40.350 --> 00:22:44.487$ the focus of this publication was cardiovascular mortality,
- $402\ 00{:}22{:}46.410$ --> $00{:}22{:}49.800$ because you may know that cardiovascular mortality
- 403~00:22:49.800 --> 00:22:54.800 typically consists about 30 to 40% of total mortality.
- $404\ 00:22:56.160 --> 00:22:59.640$ So we can see that from climate change
- $405\ 00:22:59.640 --> 00:23:02.880$ can have a direct effect to cardiovascular...
- $406\ 00:23:02.880 \longrightarrow 00:23:06.720$ Climate change leads to extreme temperature.
- $407\ 00:23:06.720 \longrightarrow 00:23:11.720$ Extreme temperature may cause cardiovascular inflammation,
- $408\ 00:23:12.330 \longrightarrow 00:23:14.860$ that will lead to cardiovascular mortality
- 409 00:23:16.110 --> 00:23:17.820 through direct effect,

- 410 00:23:17.820 --> 00:23:21.600 but also through increases in the ozone levels,
- $411\ 00:23:21.600 \longrightarrow 00:23:25.830$ that we know has impacts on cardiovascular mortality,
- $412\ 00:23:25.830 \longrightarrow 00:23:28.773$ has an indirect weight towards there.
- 413 00:23:29.610 --> 00:23:31.710 As mentioned earlier, also,
- $414\ 00:23:31.710 \longrightarrow 00:23:36.300$ the wildfires will increase due to climate change,
- $415\ 00:23:36.300 \longrightarrow 00:23:41.300$ and wildfires basically are causing increases
- $416\ 00:23:42.000 \longrightarrow 00:23:46.443$ in the levels of nitrogen dioxide and particulate matter,
- $417\ 00{:}23{:}47.345 \dashrightarrow 00{:}23{:}51.840$ and in a specific chemical composition of particulate matter
- $418\ 00:23:51.840 \longrightarrow 00:23:53.490$ that is black carbon
- $419\ 00:23:53.490 --> 00:23:57.930$ because when solid fuel produces black carbon,
- 420 00:23:57.930 --> 00:24:00.660 which is one of the constituents,
- 421 00:24:00.660 \rightarrow 00:24:04.470 possible constituents of ambient particulate matter.
- $422\ 00:24:04.470 \longrightarrow 00:24:06.330$ that from research until now
- $423\ 00:24:06.330 \longrightarrow 00:24:09.750$ has been shown to be one of the most toxic components
- 424 00:24:09.750 --> 00:24:11.370 of particulate matter.
- $425\ 00{:}24{:}11.370 \dashrightarrow 00{:}24{:}16.370$ So wild fire is expected to affect cardiovascular mortality,
- $426\ 00:24:17.220 \longrightarrow 00:24:20.820$ again through the same biological pathway,
- $427\ 00:24:20.820 --> 00:24:25.560$ either by increasing nitrogen dioxide particulate matter,
- 428 00:24:25.560 --> 00:24:28.170 and when nitrogen dioxide increases,
- $429\ 00:24:28.170 \longrightarrow 00:24:30.120$ because it's a necessary
- $430\ 00{:}24{:}30.120 \dashrightarrow 00{:}24{:}32.850$ ingredient for the formation of stratospheric ozone,
- $431\ 00:24:32.850 \longrightarrow 00:24:35.643$ also ozone will increase.
- $432\ 00{:}24{:}38.100 \dashrightarrow 00{:}24{:}43.100$ This is a very nice graph from a current European project
- $433\ 00:24:43.260 \longrightarrow 00:24:45.030$ we are running.

- 434 00:24:45.030 --> 00:24:47.340 Professor Chen is aware of this,
- $435\ 00:24:47.340 \longrightarrow 00:24:52.340$ and this has been a graphical display exactly
- $436\ 00{:}24{:}52.800 \dashrightarrow 00{:}24{:}55.650$ of the impact of climate change on air pollution
- $437\ 00:24:55.650 \longrightarrow 00:24:57.690$ and related health effects,
- 438 00:24:57.690 --> 00:25:02.690 in order to communicate this to the general public.
- 439 00:25:02.790 --> 00:25:06.120 So you can see, again, that the title, I think,
- $440\ 00{:}25{:}06.120 \dashrightarrow 00{:}25{:}09.990$ is very good for commercial and scientific reasons.
- $441\ 00:25:09.990 \longrightarrow 00:25:12.330$ We breathe climate change.
- 442 00:25:12.330 --> 00:25:15.000 So the impact on cardiovascular mortality
- 443 00:25:15.000 --> 00:25:16.800 comes from heat waves,
- $444\ 00:25:16.800 \longrightarrow 00:25:20.430$ tropospheric or ground level ozone particulate matter,
- 445 00:25:20.430 --> 00:25:24.180 wildfires, and then we have the health impacts,
- $446\ 00{:}25{:}24.180 {\: -->\:} 00{:}25{:}28.140$ that especially in Europe, it has been estimated
- $447\ 00{:}25{:}28.140 \dashrightarrow 00{:}25{:}33.140$ that air pollution may cause up to $800{,}000$ premature deaths.
- 448 00:25:37.200 --> 00:25:38.433 Oops, I'm sorry.
- $449\ 00:25:40.200 \longrightarrow 00:25:43.920$ A few words, what we mean
- $450\ 00:25:43.920 \longrightarrow 00:25:46.620$ when we talk about ozone health effects.
- $451\ 00:25:46.620 \longrightarrow 00:25:49.650$ This is the results of the global study
- $452\ 00:25:49.650 \longrightarrow 00:25:53.190$ on the short term exposure to ozone,
- $453\ 00:25:53.190 \longrightarrow 00:25:56.130$ and all cause mortality.
- $454\ 00{:}25{:}56.130 \dashrightarrow 00{:}25{:}59.460$ In the figure in the left, you may see the countries
- 455 00:25:59.460 --> 00:26:04.460 that provided data to the specific study,
- 456 00:26:04.620 --> 00:26:06.387 and here you can see per country,
- $457\ 00:26:06.387 --> 00:26:09.930$ the number of cities that contributed to data.
- $458~00{:}26{:}09.930 \dashrightarrow 00{:}26{:}14.930$ We had 188 cities from US that contributed data.

- $459\ 00:26:15.720 \longrightarrow 00:26:18.120$ You can see that US contributes
- $460\ 00:26:18.120 \longrightarrow 00:26:20.400$ a lot of ozone and mortality data,
- $461\ 00:26:20.400 \longrightarrow 00:26:23.250$ and also a lot of European cities
- 462 00:26:23.250 --> 00:26:25.170 contributed relevant data,
- $463\ 00:26:25.170 \longrightarrow 00:26:29.400$ and we had fewer countries in the Eastern Asia,
- 464 00:26:29.400 \rightarrow 00:26:34.200 a few in Asia and in Africa, and some in Australia.
- $465\ 00:26:34.200 \longrightarrow 00:26:38.400$ The figure shows the different levels of ozone,
- $466\ 00:26:38.400 \longrightarrow 00:26:42.510$ and here, you can see what the estimates,
- 467 00:26:42.510 --> 00:26:46.350 the relative risks in total mortality
- $468\ 00{:}26{:}46{.}350 \dashrightarrow 00{:}26{:}50{.}880$ for a 10 micrograms per cubic meter increase in ozone.
- $469\ 00:26:50.880 \longrightarrow 00:26:54.780$ So this is short term health effects of ozone.
- $470\ 00:26:54.780 \longrightarrow 00:26:57.870$ It's the previous day ozone,
- 471 00:26:57.870 --> 00:27:01.800 and how this will increase the next day
- $472\ 00:27:01.800 \longrightarrow 00:27:03.990$ total mortality in the cities.
- $473\ 00:27:03.990$ --> 00:27:07.860 And you can see, for example, that in the United States,
- 474 00:27:07.860 --> 00:27:11.010 the 10 micrograms increase in ozone
- $475\ 00:27:11.010 --> 00:27:15.840$ is associated with about 0.2% increase
- $476\ 00:27:15.840 --> 00:27:17.430$ in daily number of deaths.
- $477~00{:}27{:}17.430 \dashrightarrow 00{:}27{:}22.430~0.2\%$ increase is a small increase in terms of magnitude.
- $478\ 00:27:24.120 \longrightarrow 00:27:27.960$ But when we translate this into number of deaths,
- $479\ 00{:}27{:}27.960 \dashrightarrow 00{:}27{:}32.010$ you can see that this is a large number of deaths.
- $480\ 00:27:32.010$ --> 00:27:37.010 For example, if ozone exceeds the guideline from WHO,
- $481\ 00:27:38.534 \longrightarrow 00:27:42.930$ at that point was 100 micrograms per cubic meter in the US,
- $482\ 00:27:42.930 \mbox{ --> } 00:27:47.930$ this was attributed to about 200 annual excess deaths

- $483\ 00:27:48.543 -> 00:27:51.900$ attributed to ozone short term exposure.
- $484~00:27:51.900 \longrightarrow 00:27:56.900$ And this, in fact, was a 0.4% increase in total mortality.
- $485\ 00{:}27{:}57.360 {\: -->\:} 00{:}28{:}02.360$ So about, rather, a large percent of total mortality
- $486\ 00:28:05.053 \longrightarrow 00:28:08.940$ could be attributed to ozone exposure.
- 487 00:28:08.940 --> 00:28:10.200 You can also see that
- 488 00:28:10.200 --> 00:28:13.290 depending on the area of the world analyzed,
- $489\ 00:28:13.290 --> 00:28:15.900$ the magnitude of effects differed.
- $490\ 00{:}28{:}15.900 \dashrightarrow 00{:}28{:}20.900$ Okay, for example, in Athens, that's a smaller country,
- $491\ 00{:}28{:}22.470 \dashrightarrow 00{:}28{:}26.130$ sorry, smaller city, because we only contributed one city
- $492\ 00:28:26.130 \longrightarrow 00:28:30.660$ to the analysis, compared to Los Angeles, for example,
- $493\ 00:28:30.660 --> 00:28:35.400$ but is the estimate here, we have fewer number of deaths.
- $494\ 00:28:35.400 --> 00:28:37.743$ because we have a smaller population.
- $495~00:28:39.570 \longrightarrow 00:28:42.870$ Especially for USA, it has been estimated
- $496\ 00:28:42.870 -> 00:28:47.100$ that one to four degrees Celsius increase
- $497\ 00{:}28{:}47.100 \dashrightarrow 00{:}28{:}51.210$ in mean daily temperature will lead to an increase
- $498\ 00:28:51.210 --> 00:28:56.100$ of ozone levels by one to five parts per billion.
- $499\ 00{:}28{:}56.100 \dashrightarrow 00{:}29{:}01.100$ This is about 10 micrograms per cubic meter increase,
- $500\ 00:29:01.140 \longrightarrow 00:29:02.910$ and this is expected to account
- $501\ 00:29:02.910 --> 00:29:05.940$ for tens of thousands of hospitalizations
- $502\ 00:29:05.940 --> 00:29:10.380$ and deaths annually by 2030.
- 503 00:29:10.380 --> 00:29:13.770 It has also been an estimate,
- 504 00:29:13.770 --> 00:29:16.830 because you may recall that in 2003,
- 505 00:29:16.830 --> 00:29:19.473 we had a major heat wave in Europe,
- $506~00{:}29{:}21.210 \dashrightarrow 00{:}29{:}24.780$ when a lot of excess deaths were attributed exactly
- $507\ 00:29:24.780 \longrightarrow 00:29:27.540$ to the effect of this heat wave.

- $508~00:29:27.540 \dashrightarrow 00:29:30.420$ There was a recent study indicating
- $509\ 00:29:30.420 --> 00:29:34.140$ that about half of these effects of these deaths
- $510\ 00:29:34.140 --> 00:29:37.290$ could be attributed to the ozone exposure
- $511\ 00:29:37.290 \longrightarrow 00:29:42.290$ that increased exactly because of this extreme heat days.
- $512\ 00:29:45.450 --> 00:29:49.980$ This is one of the first studies to address,
- 513 00:29:49.980 --> 00:29:52.350 is a study by Professor Chen, in fact,
- 514 00:29:52.350 --> 00:29:54.000 and it's one of the first studies
- 515 00:29:54.000 --> 00:29:57.153 to simultaneously assess the interaction,
- $516\ 00:29:57.153 \longrightarrow 00:29:59.580$ the interplay between temperature levels
- 517 00:29:59.580 --> 00:30:01.560 and air pollution levels,
- 518 00:30:01.560 --> 00:30:04.430 and their impact on the daily mortality.
- $519\ 00:30:04.430 \longrightarrow 00:30:09.243$ It was an analysis that incorporated data from,
- 520 00:30:10.170 --> 00:30:14.010 you can see, eight different areas in Europe,
- 521 00:30:14.010 --> 00:30:16.770 spanning from Finland to Greece.
- 522 00:30:16.770 --> 00:30:21.390 So we had cities from northern Europe,
- 523 00:30:21.390 --> 00:30:24.450 central Europe, and southern Europe,
- 524 00:30:24.450 --> 00:30:28.380 and the table below shows the results,
- $525\ 00:30:28.380 \longrightarrow 00:30:32.190$ how the air pollution health effects differ
- $526~00:30:32.190 \longrightarrow 00:30:35.280$ according to different levels of air pollution.
- 527 00:30:35.280 --> 00:30:37.290 Just to briefly mention,
- $528\ 00:30:37.290 --> 00:30:40.800$ we have the previous day ozone health effects,
- 529 00:30:40.800 --> 00:30:43.620 the previous day PM 10 health effects,
- 530 00:30:43.620 --> 00:30:47.280 the previous day PM 2.5 health effects,
- $531~00:30:47.280 \dashrightarrow 00:30:50.848$ and PNC are even smaller particles.
- 532 00:30:50.848 --> 00:30:55.410 It's a metric to study ultra fine particles,
- $533\ 00:30:55.410 --> 00:30:59.460$ that are particles that have a diameter
- $534\ 00:30:59.460 --> 00:31:03.920$ even smaller than 0.1 micrometer.
- 535 00:31:05.760 --> 00:31:08.310 So if you see a bit closer,
- $536\ 00:31:08.310 --> 00:31:11.460$ the percent increase of mortality

- $537\ 00:31:11.460 --> 00:31:13.950$ attributed to each pollutant
- 538 00:31:13.950 --> 00:31:16.950 depending on the levels of temperature,
- $539\ 00:31:16.950 \longrightarrow 00:31:19.680$ we can see steadily that there is a trend
- 540 00:31:19.680 --> 00:31:23.550 that we have higher effects for all air pollution,
- $541\ 00:31:23.550 \longrightarrow 00:31:25.650$ for all air pollutants studied
- $542\ 00:31:25.650 --> 00:31:29.760$ when air temperature levels are higher.
- $543\ 00:31:29.760 \longrightarrow 00:31:33.153$ And the same goes for cardiovascular deaths.
- 544 00:31:35.280 --> 00:31:38.040 Following this study by Professor Chen,
- $545\ 00:31:38.040 --> 00:31:39.930$ there have been many other studies
- 546 00:31:39.930 --> 00:31:41.250 following the same rationale,
- 547 00:31:41.250 --> 00:31:43.170 and investigating this interaction
- $548\ 00:31:43.170 --> 00:31:45.030$ between temperature and air pollutants.
- 549 00:31:45.030 --> 00:31:48.780 And this is a nice review of several studies
- $550\ 00:31:48.780 --> 00:31:53.700$ across the globe that have tried to assess
- $551\ 00:31:53.700 \longrightarrow 00:31:58.140$ the interaction between particles and temperature,
- $552\ 00:31:58.140 \longrightarrow 00:32:02.400$ and try to estimate future attributable events
- 553 00:32:02.400 --> 00:32:05.370 depending on emission scenarios,
- $554\ 00{:}32{:}05.370 {\:{\circ}{\circ}{\circ}}>00{:}32{:}09.273$ both for air pollution and future climatic scenarios.
- $555\ 00:32:10.830 --> 00:32:14.010$ I see that we are running a bit out of time,
- 556 00:32:14.010 --> 00:32:17.220 so I will go very quickly through this.
- $557\ 00:32:17.220 \longrightarrow 00:32:18.660$ We have the slides,
- $558\ 00:32:18.660 --> 00:32:22.110$ and you can follow up the references if needed,
- 559 00:32:22.110 --> 00:32:24.780 but depending on the area,
- 560~00:32:24.780 --> 00:32:28.050 you can see that we have different air pollutants
- $561\ 00:32:28.050 \longrightarrow 00:32:29.910$ that have been assessed.
- $562\ 00:32:29.910 \longrightarrow 00:32:33.810$ The majority of the studies assess the effects of ozone,
- $563~00{:}32{:}33.810 \dashrightarrow 00{:}32{:}36.900$ and in all of them that assess the effects of ozone

- 564 00:32:36.900 --> 00:32:38.610 under different scenarios,
- $565\ 00:32:38.610 \longrightarrow 00:32:41.153$ assessed an increase in attributable cases
- $566\ 00:32:41.153 \longrightarrow 00:32:43.080$ to ozone exposure.
- 567 00:32:43.080 --> 00:32:45.780 Attributable cases to particle exposure
- $568\ 00:32:45.780 --> 00:32:48.180$ depending on emissions of air pollution
- $569\ 00:32:48.180 \longrightarrow 00:32:50.100$ and climate change scenarios
- 570 00:32:50.100 --> 00:32:53.010 differed according to the study.
- $571\ 00:32:53.010 \longrightarrow 00:32:56.884$ We had peaks of particulate matter related deaths,
- 572 00:32:56.884 --> 00:32:58.140 then deaths stabilized,
- 573 00:32:58.140 --> 00:32:59.670 or depending on the scenario,
- $574~00{:}32{:}59.670 \dashrightarrow 00{:}33{:}04.023$ this was not such a consistent pattern as was for ozone.
- $575\ 00:33:05.310 \longrightarrow 00:33:07.530$ In any case, the authors urge
- $576\ 00:33:07.530 --> 00:33:10.980$ that future scenarios to try to account
- $577\ 00:33:10.980 \longrightarrow 00:33:14.610$ for both changes in emissions,
- 578 00:33:14.610 --> 00:33:18.990 because we have transitioned, for example,
- $579\ 00:33:18.990 \longrightarrow 00:33:23.990$ from solid fuel to the electric fleet for traffic,
- $580\ 00:33:24.060 \longrightarrow 00:33:26.400$ but also to different measures
- $581\ 00:33:26.400 \longrightarrow 00:33:30.150$ that will account for different emissions
- $582\ 00{:}33{:}30.150 \dashrightarrow 00{:}33{:}33.690$ that will change future climate change scenarios
- $583\ 00:33:33.690 --> 00:33:35.823$ and associated temperature levels.
- 584 00:33:36.870 --> 00:33:40.080 This is a systematic review and meta-analysis
- $585\ 00:33:40.080 --> 00:33:41.940$ trying to assess the evidence
- $586\ 00:33:41.940 \longrightarrow 00:33:44.760$ on the combined effects between air pollution,
- $587\ 00:33:44.760 --> 00:33:47.310$ temperature, and pollen exposure.
- 588 00:33:47.310 --> 00:33:49.470 I will not go very much in depth,
- $589\ 00:33:49.470 \longrightarrow 00:33:54.470$ but this table shows a summary of the results
- 590 00:33:54.570 --> 00:33:57.270 that started all three exposures together,
- 591 00:33:57.270 --> 00:33:59.160 because climate change impact,
- $592\ 00:33:59.160 --> 00:34:02.190$ my talk is focused on human health,

- $593\ 00:34:02.190 \longrightarrow 00:34:06.780$ but of course, climate change has impact on agriculture,
- $594\ 00:34:06.780 \longrightarrow 00:34:10.620$ and this is expected also to increase
- $595\ 00:34:10.620 \longrightarrow 00:34:14.160$ certain levels of pollen, that is also, as we know,
- $596\ 00:34:14.160 \longrightarrow 00:34:16.920$ associated with respiratory effects.
- 597~00:34:16.920 --> 00:34:20.910 So the authors only managed to appraise six studies
- $598\ 00:34:20.910 \longrightarrow 00:34:24.210$ that assessed the three exposures altogether,
- $599\ 00:34:24.210 --> 00:34:26.940$ and depending on certain criteria
- 600 00:34:26.940 --> 00:34:29.760 of consistency of the evidence
- $601\ 00:34:29.760 \longrightarrow 00:34:33.270$ of the cumulative effect of these three exposures,
- $602\ 00:34:33.270 \longrightarrow 00:34:36.707$ concluded that overall, there was low quality
- $603\ 00:34:36.707 \longrightarrow 00:34:40.980$ in the evidence to support interactive effects
- 604 00:34:40.980 --> 00:34:43.710 of all air pollutants,
- $605\ 00{:}34{:}43.710 \dashrightarrow 00{:}34{:}47.250$ but there was some limited evidence for indications
- $606\ 00:34:47.250 \longrightarrow 00:34:49.083$ of interaction effects.
- $607~00{:}34{:}50.340 \dashrightarrow 00{:}34{:}55.340$ They figured that there was a much larger literature
- $608\ 00:34:55.410 --> 00:34:57.660$ that had assessed both heat effects
- 609 00:34:57.660 --> 00:35:00.000 and air pollution simultaneously,
- $610\ 00:35:00.000 \longrightarrow 00:35:03.930$ and they managed to gather 39 studies
- $611\ 00:35:03.930 \dashrightarrow 00:35:07.140$ that assess the interactive effects on both.
- $612\ 00:35:07.140 \longrightarrow 00:35:11.220$ And the conclusion of this systematical use
- $613\ 00{:}35{:}11.220 \dashrightarrow 00{:}35{:}15.480$ is that, in fact, there was a moderate quality of evidence
- $614\ 00:35:15.480 --> 00:35:20.480$ that those response relationships in a number of studies
- $615\ 00{:}35{:}21.810 {\: \text{--}}{\:>} \ 00{:}35{:}25.530$ was moderate, but there was sufficient evidence
- $616\ 00:35:25.530 \longrightarrow 00:35:27.690$ that there was synergistic effects
- 617 00:35:27.690 --> 00:35:30.750 between heat and air pollution exposures,

- $618\ 00:35:30.750 \longrightarrow 00:35:33.603$ specifically for ozone and particulate matter.
- $619~00{:}35{:}36.060 \dashrightarrow 00{:}35{:}40.380$ This is a nice review on the climate change impact
- $620\ 00{:}35{:}40.380 \dashrightarrow 00{:}35{:}45.307$ on human health and agricultural effects, productivity,
- $621\ 00:35:46.800 \longrightarrow 00:35:50.370$ and of course, the different impacts are studied
- $622\ 00:35:50.370 \longrightarrow 00:35:52.260$ according to different designs,
- $623\ 00:35:52.260 --> 00:35:54.718$ and you can see that we have mainly, of course,
- $624\ 00:35:54.718 \longrightarrow 00:35:58.770$ observational studies assessing the impact
- $625\ 00:35:58.770 --> 00:36:02.190$ on human health, and mostly,
- $626\ 00:36:02.190 \longrightarrow 00:36:04.920$ when we talk about temperature and air pollution,
- $627\ 00:36:04.920 \longrightarrow 00:36:09.060\ I$ forgot to point out we are focusing on short term,
- $628\ 00:36:09.060 --> 00:36:12.180$ because we know that temperature has a short term
- 629 00:36:12.180 --> 00:36:15.180 of human health, and in fact,
- $630\ 00:36:15.180 \longrightarrow 00:36:19.350$ high warm temperature have a effect on health,
- 631 00:36:19.350 --> 00:36:21.900 meaning have increasing hospitalizations
- 632 00:36:21.900 --> 00:36:25.140 due to cardiovascular or respiratory causes,
- 633 00:36:25.140 --> 00:36:28.380 or increase in cardiorespiratory mortality
- $634\ 00:36:28.380 --> 00:36:30.630$ that spans from the same day
- $635\ 00:36:30.630 \longrightarrow 00:36:33.510$ up to three days later than the events,
- $636\ 00:36:33.510 \longrightarrow 00:36:36.300$ while the effect of the cold temperature
- $637\ 00:36:36.300 \longrightarrow 00:36:39.690$ is expected to have a much longer impact.
- $638\ 00{:}36{:}39.690 \dashrightarrow 00{:}36{:}44.400$ So we may observe hospitalization and mortality counts
- $639\ 00:36:44.400 \longrightarrow 00:36:48.330$ associated with cold effects even following
- $640\ 00:36:48.330 \longrightarrow 00:36:53.330$ two weeks after the cold effect, the cold level observed.
- $641\ 00:36:54.360 \longrightarrow 00:36:57.690$ So in any case, when we talk about interaction
- 642 00:36:57.690 --> 00:37:00.510 between temperature and air pollution,

- $643\ 00:37:00.510$ --> 00:37:04.740 we are focusing on short term health effects of both.
- $644\ 00:37:04.740 \longrightarrow 00:37:09.510$ And in this review, also, it pointed out several designs,
- $645\ 00{:}37{:}09.510$ --> $00{:}37{:}12.330$ and how this was studied both on human health
- 646 00:37:12.330 --> 00:37:14.460 and agricultural impacts,
- $647\ 00:37:14.460 \longrightarrow 00:37:17.130$ and there was this nice figure
- 648 00:37:17.130 --> 00:37:19.830 showing that temperature does modify
- $649\ 00:37:19.830 --> 00:37:21.570$ air pollution impacts on health
- 650 00:37:21.570 --> 00:37:26.190 depending on the area, the pollutant studied,
- $651\ 00:37:27.300 \longrightarrow 00:37:30.123$ or the methodological parameters studied,
- $652\ 00:37:31.050 \longrightarrow 00:37:33.630$ and that contributed to climate change effect,
- $653\ 00:37:33.630 \longrightarrow 00:37:35.250$ and also the vice versa,
- $654\ 00:37:35.250 --> 00:37:39.213$ that air pollution also modified temperature health effects.
- $655\ 00:37:42.660 \longrightarrow 00:37:47.167$ I prefer to briefly show you some results.
- $656~00:37:50.340 \longrightarrow 00:37:54.030$ This is unpublished work, sorry about this.
- $657\ 00:37:54.030 \longrightarrow 00:37:57.750$ This is unpublished work for, again, a global study.
- $658\ 00{:}37{:}57.750$ --> $00{:}38{:}01.560$ You can see that this study includes about 500 cities
- $659\ 00:38:01.560 --> 00:38:04.470$ spanning across the globe from 32 studies
- $660\ 00:38:04.470 \longrightarrow 00:38:08.880$ that contributed data on air pollution and temperature,
- $661~00{:}38{:}08.880 \dashrightarrow 00{:}38{:}13.380$ and in fact, present results for the interaction effect
- $662\ 00{:}38{:}13.380 {\:-->}\ 00{:}38{:}16.050$ between temperature and air pollution levels,
- $663\ 00{:}38{:}16.050 \dashrightarrow 00{:}38{:}20.790$ the short term exposures, and the impact on total mortality.
- 664 00:38:20.790 --> 00:38:22.320 You can see in the graph again
- $665~00{:}38{:}22.320 \dashrightarrow 00{:}38{:}25.020$ that the majority of the cities contributing data
- $666\ 00:38:25.020 \longrightarrow 00:38:27.093$ come from US and Europe,

- $667\ 00:38:27.965 \longrightarrow 00:38:29.580$ and the difference at the top
- $668\ 00:38:29.580 \longrightarrow 00:38:32.910$ is the different levels of average temperature,
- $669\ 00:38:32.910 \longrightarrow 00:38:36.813$ and lower is the different levels of ozone, for example.
- 670 00:38:38.010 --> 00:38:41.430 To graphically quickly show you the results,
- 671 00:38:41.430 --> 00:38:44.490 these are the results from North, Central,
- $672\ 00:38:44.490 \longrightarrow 00:38:45.690$ and South America.
- $673\ 00:38:45.690 \longrightarrow 00:38:48.090$ So we have the PM 2.5,
- $674\ 00:38:48.090 \longrightarrow 00:38:51.570$ let's focus on the main central figure.
- 675 00:38:51.570 --> 00:38:54.030 It's PM 2.5 effects,
- $676\ 00:38:54.030 \longrightarrow 00:38:57.870$ or total mortality by levels of pollutant.
- $677\ 00:38:57.870 \longrightarrow 00:39:01.380$ So you can see again a steady trend,
- 678 00:39:01.380 --> 00:39:03.960 both for Canada, for example, and US,
- $679\ 00:39:03.960 \longrightarrow 00:39:07.600$ although this may not be statistically different
- $680\ 00:39:08.700 \longrightarrow 00:39:09.840$ between them.
- 681 00:39:09.840 --> 00:39:11.790 As temperature levels increased,
- $682\ 00:39:11.790 --> 00:39:16.590$ the effect of PM 2.5 on mortality increases.
- $683\ 00:39:16.590$ --> 00:39:20.250 This is not the pattern that is observed in Mexico
- $684\ 00:39:20.250 \longrightarrow 00:39:24.810$ or other areas of Latin America,
- $685\ 00{:}39{:}24.810$ --> $00{:}39{:}27.540$ but of course, you may consider that the number of cities
- $686\ 00:39:27.540 --> 00:39:32.540$ contributing data differs by the country shown here.
- 687 00:39:33.210 --> 00:39:36.420 The same patterns, pretty much,
- $688\ 00:39:36.420 --> 00:39:39.990$ was observed in the majority of the European cities.
- 689 00:39:39.990 --> 00:39:43.500 You can see here for PM 2.5 in Northern Europe,
- 690 00:39:43.500 --> 00:39:47.283 we have increasing terms in Norway,
- $691\ 00:39:48.840 --> 00:39:52.410$ but not a consistent pattern for other countries.
- $692\ 00:39:52.410 --> 00:39:54.570$ There was a increasing trend

- 693 00:39:54.570 --> 00:39:59.570 also for (indistinct) particles, and the levels,
- $694~00{:}39{:}59.610 \dashrightarrow 00{:}40{:}03.750$ the effect of ozone depending on temperature levels
- $695\ 00:40:03.750 \longrightarrow 00:40:07.443$ did not seem to vary in the European cities.
- $696\ 00:40:10.500 \longrightarrow 00:40:13.740$ To give you an idea in numbers,
- $697\ 00:40:13.740 \longrightarrow 00:40:17.940$ these are the overall global estimates
- $698\ 00:40:17.940 --> 00:40:20.100$ of the health effects of the pollutants
- $699\ 00:40:20.100 \longrightarrow 00:40:22.740$ depending on the level of air pollution.
- $700~00:40:22.740 \dashrightarrow 00:40:25.710$ So globally, we may see increasing effects,
- 701 00:40:25.710 --> 00:40:30.710 either of PM 10, PM 2.5, or ozone effects
- $702\ 00:40:31.260 \longrightarrow 00:40:32.760$ on total mortality.
- $703\ 00:40:32.760 \longrightarrow 00:40:35.400$ Of course, because these are global estimates
- 704 00:40:35.400 --> 00:40:37.500 of the air pollution health effects,
- $705\ 00{:}40{:}37.500 \dashrightarrow 00{:}40{:}42.500$ there is large (in distinct) in this kind of meta-analysis.
- 706 00:40:42.720 --> 00:40:45.360 As I mentioned earlier, indirect pathway
- $707\ 00{:}40{:}45.360$ --> $00{:}40{:}48.780$ between climate change and air pollution health effects
- $708\ 00:40:48.780 \longrightarrow 00:40:51.360$ comes from wildfires,
- $709\ 00:40:51.360 --> 00:40:54.790$ and here is one study we had been doing
- $710\ 00:40:55.680 \longrightarrow 00:40:58.560$ about 20 years ago that studied the impact
- 711 00:40:58.560 --> 00:41:00.960 of forest fires on mortality,
- 712 00:41:00.960 --> 00:41:04.650 and how this could be associated from particulate matter.
- $713\ 00:41:04.650 \longrightarrow 00:41:09.650$ This is a dot diagram trying to figure out the pathway
- $714\ 00:41:10.920 --> 00:41:13.320$ that this may have affected health.
- 715 00:41:13.320 --> 00:41:15.810 So we may have direct effect,
- 716 00:41:15.810 --> 00:41:18.540 direct death as an effect of forest fire,
- $717\ 00:41:18.540 --> 00:41:22.200$ or we may have an indirect death
- 718 00:41:22.200 --> 00:41:25.680 through increases in particulate matter levels,
- 719 00:41:25.680 --> 00:41:28.230 or even through increases in temperature,

 $720\ 00{:}41{:}28.230 \dashrightarrow 00{:}41{:}32.520$ because locally, the temperature levels also increase

721 00:41:32.520 --> 00:41:33.660 due to wildfire.

 $722\ 00:41:33.660 --> 00:41:38.343$ So this may affect our health outcomes in multiple pathways.

 $723\ 00:41:39.540 \longrightarrow 00:41:43.140$ This figure shows the severity and occurrence

 $724\ 00:41:43.140 --> 00:41:47.347$ of forest fires in the Southern Europe from 2003 to 2011.

 $725\ 00:41:48.540 \longrightarrow 00:41:52.620$ Of course, there was variability depending on the country,

 $726\ 00:41:52.620$ --> 00:41:57.620 but in general, we saw that there was not much difference

 $727\ 00:42:00.150 \longrightarrow 00:42:05.150$ on the effects of particles depending on forest fire days

 $728\ 00:42:05.160 \longrightarrow 00:42:08.640$ or non forest fire days.

 $729\ 00:42:08.640 \longrightarrow 00:42:10.830$ On smoke free days, for example,

 $730\ 00:42:10.830 \longrightarrow 00:42:15.830$ there was a 0.5% increase in total mortality,

731 00:42:16.500 --> 00:42:19.680 and on wildfire affected days,

732 00:42:19.680 --> 00:42:22.500 the increase in mortality was almost double,

733 00:42:22.500 --> 00:42:25.710 but it was not statistically significant,

734 00:42:25.710 --> 00:42:27.837 and it was a very wide (indistinct).

735 00:42:28.860 --> 00:42:30.930 But that's why I mentioned that,

 $736\ 00:42:30.930 --> 00:42:32.850$ although the results may not be

 $737\ 00:42:32.850 \longrightarrow 00:42:36.990$ statistically significantly different between them,

 $738\ 00:42:36.990 \longrightarrow 00:42:41.990$ because we have much fewer count of wildfire affected days,

 $739\ 00:42:42.900 \longrightarrow 00:42:45.900$ we can see that in most of the cases,

 $740\ 00:42:45.900 \longrightarrow 00:42:49.263$ the impact is greater in wildfire affected days.

741 00:42:50.640 --> 00:42:52.020 I mentioned briefly

 $742\ 00:42:52.020 \longrightarrow 00:42:56.130$ that what solid fuel emits is black carbon,

743 00:42:56.130 --> 00:42:58.230 and I mentioned that black carbon

744 00:42:58.230 --> 00:43:00.180 is one of the most toxic components

 $745\ 00:43:00.180 \longrightarrow 00:43:03.240$ of ambient particulate matter.

 $746\ 00:43:03.240 \longrightarrow 00:43:05.040$ Black carbon health effects

747 00:43:05.040 --> 00:43:06.840 have been increasingly been studied.

748 00:43:06.840 --> 00:43:10.650 This is again from the same consortium that I showed you

749 00:43:10.650 --> 00:43:13.170 the paper before, from forest fires,

 $750\ 00:43:13.170 --> 00:43:17.553$ that we assessed the effects of black carbon on mortality.

751 00:43:18.630 --> 00:43:23.040 And we can see that it had high health effects,

 $752\ 00:43:23.040 --> 00:43:25.410$ either on the same day of exposure,

 $753\ 00:43:25.410 \longrightarrow 00:43:29.550$ or up to an average of three days before the events,

 $754\ 00:43:29.550 \longrightarrow 00:43:31.710$ both in Athens and Barcelona.

755 00:43:31.710 --> 00:43:34.290 And the effects of black carbon were much higher

 $756\ 00:43:34.290 \longrightarrow 00:43:39.270$ than the ones that usually are observed and attributed

 $757\ 00:43:39.270 \longrightarrow 00:43:40.563$ to particulate matter.

 $758\ 00:43:41.850 --> 00:43:46.850$ This is another study on wildfire sourced PM 2.5,

 $759\ 00:43:49.290 --> 00:43:51.540$ also coming from the same consortium

 $760\ 00:43:51.540 --> 00:43:54.548$ studying short term health effects

 $761\ 00:43:54.548 \longrightarrow 00:43:56.697$ of air pollutants and temperature effects.

762~00:43:56.697 --> 00:44:00.600 And this study focused exactly on the health effects

 $763\ 00:44:00.600 \longrightarrow 00:44:05.600$ from PM 2.5 that was emitted from wildfire.

764 00:44:05.910 --> 00:44:07.887 And you can see again, the figure,

 $765\ 00{:}44{:}07.887 \dashrightarrow 00{:}44{:}12.887$ the number of city that contributed data, sorry,

766 00:44:13.740 --> 00:44:18.740 and the level of wildfire related PM 2.5 by city.

767 00:44:21.180 --> 00:44:25.680 They assessed the effect of wildfire PM 2.5,

 $768~00{:}44{:}25.680 \dashrightarrow 00{:}44{:}29.220$ either on the same day, or up to six days before,

- $769\ 00:44:29.220 \longrightarrow 00:44:30.860$ or the red...
- 770 00:44:32.550 --> 00:44:34.920 The red point on the figure on the left
- 771 00:44:34.920 --> 00:44:37.650 stands for the three days moving average
- 772 00:44:37.650 --> 00:44:42.650 of the exposure to wildfire related PM 2.5.
- 773 00:44:43.410 --> 00:44:46.710 So in all cases, we see very high effects
- 774 00:44:46.710 --> 00:44:49.920 up to three days after the exposure,
- $775\ 00:44:49.920 \longrightarrow 00:44:52.800$ or on the average of the same
- $776\ 00:44:52.800 \longrightarrow 00:44:55.413$ and two days prior to the event.
- $777\ 00:44:56.250 \longrightarrow 00:45:01.080$ Particularly for US, there was a 0.3% increase
- $778\ 00:45:01.080 --> 00:45:05.310$ in total mortality associated with PM 2.5
- $779\ 00:45:05.310 \longrightarrow 00:45:08.640$ that could be attributed to wildfires.
- $780\ 00:45:08.640 --> 00:45:11.640$ And this was the same percent increase
- $781~00{:}45{:}11.640 \dashrightarrow 00{:}45{:}15.450$ attributed also for cardiovascular or respiratory mortality.
- 782 00:45:15.450 --> 00:45:18.180 Again, the magnitude on the effects
- $783\ 00:45:18.180 --> 00:45:21.963$ depending on the location, as you may expect, differs.
- 784 00:45:23.550 \rightarrow 00:45:26.840 I also mentioned briefly that we expect an increase
- $785\ 00:45:26.840 \longrightarrow 00:45:31.260$ in the frequency duration of desert dust episodes,
- 786 00:45:31.260 --> 00:45:34.140 and we know also that desert dust
- $787\ 00:45:34.140 \longrightarrow 00:45:38.777$ may have impacts on health, and here is again a paper
- 788 00:45:40.830 --> 00:45:44.650 investigating the impact of desert dust
- $789\ 00:45:46.625 --> 00:45:49.457$ on daily mortality in southern Europe.
- 790 00:45:50.520 --> 00:45:51.960 And you can see,
- $791\ 00:45:51.960 \longrightarrow 00:45:56.960$ because particles from desert dust are of larger diameter,
- 792 00:45:57.870 --> 00:46:01.080 we assessed here the health effects of PM 10,
- $793~00:46:01.080 \longrightarrow 00:46:03.480$ that are larger, as I mentioned in the beginning,

794~00:46:03.480 --> 00:46:07.800 compared to PM 2.5, and whether this could be attributed

795 00:46:07.800 --> 00:46:09.840 to non desert dust sources,

 $796\ 00:46:09.840 \longrightarrow 00:46:14.010$ or desert sources, excuse me.

797 00:46:14.010 --> 00:46:17.730 So in total, for example, for all cause mortality,

 $798\ 00:46:17.730 --> 00:46:21.390$ an increase in PM 10 was associated

799 00:46:21.390 --> 00:46:25.290 with a 0.5% increase in total mortality.

 $800\ 00:46:25.290 \longrightarrow 00:46:30.290$ This was a bit higher, 0.55, for non desert PM 10,

 $801\ 00:46:31.530 \longrightarrow 00:46:36.530$ and PM 10 originating from desert dust

802 00:46:37.710 --> 00:46:41.520 had even higher effect on total mortality,

 $803\ 00:46:41.520 \longrightarrow 00:46:44.400$ and pattern was pretty much the same

 $804\ 00:46:44.400 \longrightarrow 00:46:46.830$ when we assessed cardiovascular mortality,

805 00:46:46.830 --> 00:46:48.300 respiratory mortality,

 $806\ 00:46:48.300 --> 00:46:51.573$ and also there was an impact on hospital admissions.

 $807~00:46:52.800 \longrightarrow 00:46:56.820$ Just to close, and apologies for taking all the time.

 $808\ 00:46:56.820 --> 00:47:00.330$ We had a major event in Athens last year

 $809\ 00:47:00.330 \longrightarrow 00:47:02.580$ that you may not be aware of,

 $810\ 00{:}47{:}02.580 {\:\hbox{--}}{>}\ 00{:}47{:}07.580$ but for our twisted mind as scientists was very intriguing,

811 00:47:09.090 --> 00:47:12.060 because we have a very intense heat wave

812 00:47:12.060 --> 00:47:15.510 that lasted more than three weeks,

 $813\ 00:47:15.510 --> 00:47:18.030$ and after two weeks of heatwave,

 $814\ 00:47:18.030 \longrightarrow 00:47:21.720$ also a major wildfire started

 $815\ 00:47:21.720 --> 00:47:24.270$ in the northern suburbs of Athens.

 $816\ 00:47:24.270 \longrightarrow 00:47:28.500$ So we are in the process of studying this

 $817\ 00{:}47{:}28.500 \dashrightarrow 00{:}47{:}32.250$ on mortality in the general population of Athens.

 $818\ 00:47:32.250 --> 00:47:36.300$ The graph shows the excess number of deaths,

 $819\ 00{:}47{:}36.300 \dashrightarrow 00{:}47{:}41.300$ and you can see the counts in daily mean temperature

- $820\ 00:47:42.480 --> 00:47:46.560$ in the previous years, compared to the period
- $821\ 00:47:46.560 \longrightarrow 00:47:48.870$ that the heat wave and the desert
- 822 00:47:48.870 --> 00:47:52.560 and the wildfire started in Athens,
- $823\ 00:47:52.560$ --> 00:47:57.560 and also the average number of deaths in previous years,
- $824\ 00:47:57.870 \longrightarrow 00:48:00.810$ and the excess numbers of deaths during this episode,
- $825\ 00:48:00.810 \longrightarrow 00:48:02.930$ that we can see higher increases, of course,
- $826\ 00:48:02.930 \longrightarrow 00:48:05.490$ in temperature and excess deaths.
- $827\ 00:48:05.490 --> 00:48:08.730$ And briefly, some very premature results.
- $828\ 00:48:08.730 \longrightarrow 00:48:12.600$ When we try to associate the increase on mortality,
- 829 00:48:12.600 --> 00:48:14.010 on daily mortality
- 830 00:48:14.010 --> 00:48:17.430 attributed to this very intense heat wave,
- 831 00:48:17.430 --> 00:48:20.580 this accounted for about 20% increase.
- $832\ 00:48:20.580 \longrightarrow 00:48:21.870$ This is a huge increase.
- $833\ 00{:}48{:}21.870 \dashrightarrow 00{:}48{:}26.870$ If we consider, for example, that high temperature levels
- $834~00{:}48{:}27.600 \dashrightarrow 00{:}48{:}32.600$ account for about four to 5% increase in daily mortality,
- 835 00:48:33.102 --> 00:48:36.330 20% increase in daily mortality due to a heat wave
- $836\ 00{:}48{:}36.330 \dashrightarrow 00{:}48{:}39.630$ is a very severe public health issue.
- 837 00:48:39.630 --> 00:48:43.590 And this even reached 70% increase in daily mortality
- $838\ 00:48:43.590 \longrightarrow 00:48:45.660$ when this intense heat wave
- $839\ 00{:}48{:}45.660 {\:\hbox{--}}{>}\ 00{:}48{:}50.660$ was combined with a wild fire that lasted about a week
- $840\ 00:48:50.880 \longrightarrow 00:48:52.533$ in the outskirts of the city.
- $841\ 00:48:53.940 --> 00:48:57.780$ So to conclude, and thank you for your attention,
- $842\ 00{:}48{:}57.780 \dashrightarrow 00{:}49{:}00.720$ there seems to be synergistic and interactive effects
- $843\ 00:49:00.720 \longrightarrow 00:49:03.030$ between climate change variables,

 $844\ 00:49:03.030 \longrightarrow 00:49:05.670$ such as temperature and air pollution.

 $845~00{:}49{:}05.670 \dashrightarrow 00{:}49{:}08.086$ There is heterogeneity on the effects,

846 00:49:08.086 --> 00:49:10.680 depending on the location we are studying,

 $847\ 00:49:10.680 \longrightarrow 00:49:12.600$ but this may be also attributed

 $848\ 00:49:12.600 \longrightarrow 00:49:17.250$ to a large variety of factors, also socioeconomic factors,

 $849\ 00:49:17.250 \longrightarrow 00:49:20.910$ the percent of aging of the population,

 $850\ 00:49:20.910 \longrightarrow 00:49:23.550$ and other demographic characteristics.

 $851\ 00:49:23.550 \longrightarrow 00:49:26.760$ There is a call for further research interactions

 $852\ 00:49:26.760 --> 00:49:28.950$ between parameters of air pollution

853 00:49:28.950 --> 00:49:30.810 and climate change events,

 $854~00{:}49{:}30.810 \dashrightarrow 00{:}49{:}33.780$ but also on the assessment of the cumulative effects

 $855\ 00:49:33.780 \longrightarrow 00:49:37.620$ of all these environmental factors.

 $856\ 00:49:37.620 \longrightarrow 00:49:38.970$ And there's also a need

 $857\ 00:49:38.970 --> 00:49:42.090$ to address more complex future scenarios,

 $858\ 00:49:42.090 \longrightarrow 00:49:46.380$ accounting for reduction on tailpipe emissions

 $859\ 00:49:46.380 \longrightarrow 00:49:49.950$ due to the electrification of the fleet,

 $860\ 00:49:49.950 \longrightarrow 00:49:51.660$ as I mentioned earlier.

 $861~00{:}49{:}51.660 \dashrightarrow 00{:}49{:}55.080$ But this is also expected to account for an increase

 $862\ 00:49:55.080$ --> 00:49:59.643 in non tailpipe emissions, due to tire wear and brake wear.

 $863\ 00:50:00.750 \longrightarrow 00:50:05.670$ And we need to push through policy decisions

 $864\ 00:50:05.670 \longrightarrow 00:50:08.880$ to develop solutions that will effectively tackle

865 00:50:08.880 --> 00:50:12.900 both climate change and air pollution levels,

 $866\ 00:50:12.900 \longrightarrow 00:50:14.920$ because these seem to be

 $867\ 00:50:18.554 \longrightarrow 00:50:20.827$ undividedly interchanged between them.

868 00:50:22.410 --> 00:50:24.810 So thank you very much for your attention,

 $869~00{:}50{:}24.810$ --> $00{:}50{:}27.510$ and I would particularly like to thank my team

870 00:50:27.510 --> 00:50:29.010 in the University of Athens,

 $871\ 00:50:29.010 --> 00:50:33.810$ and also the consortium of the EXHAUSTION research program

872 00:50:33.810 --> 00:50:35.880 at (indistinct) in Europe.

873 00:50:35.880 --> 00:50:39.330 And I will be happy to discuss any questions,

 $874\ 00{:}50{:}39.330 \dashrightarrow 00{:}50{:}44.313$ either today, or in person in about two weeks time.

875 00:50:46.230 --> 00:50:47.213 <v Professor Chen>Thank you.</v>